Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Radiother ; 25(6-7): 554-564, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34272182

RESUMO

In the current spectrum of cancer treatments, despite high costs, a lack of robust evidence based on clinical outcomes or technical and radiobiological uncertainties, particle therapy and in particular proton therapy (PT) is rapidly growing. Despite proton therapy being more than fifty years old (first proposed by Wilson in 1946) and more than 220,000 patients having been treated with in 2020, many technological challenges remain and numerous new technical developments that must be integrated into existing systems. This article presents an overview of on-going technical developments and innovations that we felt were most important today, as well as those that have the potential to significantly shape the future of proton therapy. Indeed, efforts have been done continuously to improve the efficiency of a PT system, in terms of cost, technology and delivery technics, and a number of different developments pursued in the accelerator field will first be presented. Significant developments are also underway in terms of transport and spatial resolution achievable with pencil beam scanning, or conformation of the dose to the target: we will therefore discuss beam focusing and collimation issues which are important parameters for the development of these techniques, as well as proton arc therapy. State of the art and alternative approaches to adaptive PT and the future of adaptive PT will finally be reviewed. Through these overviews, we will finally see how advances in these different areas will allow the potential for robust dose shaping in proton therapy to be maximised, probably foreshadowing a future era of maturity for the PT technique.


Assuntos
Previsões , Neoplasias/radioterapia , Terapia com Prótons/tendências , Institutos de Câncer , Ciclotrons , Humanos , Análise de Ativação de Nêutrons , Tratamentos com Preservação do Órgão/instrumentação , Tratamentos com Preservação do Órgão/métodos , Órgãos em Risco , Terapia com Prótons/economia , Terapia com Prótons/instrumentação , Terapia com Prótons/métodos , Garantia da Qualidade dos Cuidados de Saúde , Radioterapia Guiada por Imagem/tendências , Síncrotrons
2.
Phys Med ; 64: 195-203, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31515020

RESUMO

The aim of this work is to perform Monte Carlo simulations of a proton pencil beam scanning machine, characterise the low-dose envelope of scanned proton beams and assess the differences between various approximations for nozzle geometry. Measurements and Monte Carlo simulations were carried out in order to describe the dose distribution of a proton pencil beam in water for energies between 100 and 220 MeV. Dose distributions were simulated by using a Geant4 Monte Carlo platform (TOPAS), and were measured in water using a two-dimensional ion chamber array detector. The beam source in air was adjusted for each configuration. Double Gaussian parameterisation was proposed for definition of the beam source model in order to improve simulations starting at the nozzle exit. Absolute dose distributions and field size factors were measured and compared with simulations. The influence of the high-density components present in the treatment nozzle was also investigated by analysis of proton phase spaces at the nozzle exit. An excellent agreement was observed between experimental dose distributions and simulations for energies higher than 160 MeV. However, minor differences were observed between 100 and 160 MeV, suggesting poorer modelling of the beam when the full treatment head was not taken into account. We found that the first ionisation chamber was the main cause of the tail component observed for low proton beam energies. In this work, various parameterisations of proton sources were proposed, thereby allowing reproduction of the low-dose envelope of proton beams and excellent agreement with measured data.


Assuntos
Método de Monte Carlo , Terapia com Prótons/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
3.
Phys Med Biol ; 61(17): 6413-29, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27499356

RESUMO

Small diamond detectors are useful for the dosimetry of high-energy proton beams. However, linear energy transfer (LET) dependence has been observed in the literature with such solid state detectors. A novel synthetic diamond detector has recently become commercially available from the manufacturer PTW-Freiburg (PTW microDiamond type 60019). This study was designed to thoroughly characterize four microDiamond detectors in clinical proton beams, in order to investigate their response and their reproducibility in high LET regions. Very good dosimetric characteristics were observed for two of them, with good stability of their response (deviation less than 0.4% after a pre-irradiation dose of approximately 12 Gy), good repeatability (coefficient of variation of 0.06%) and a sensitivity of approximately 0.85 nC Gy(-1). A negligible dose rate dependence was also observed for these two microDiamonds with a deviation of the sensitivity less than 0.7% with respect to the one measured at the reference dose rate of 2.17 Gy min(-1), in the investigated dose rate range from 1.01 Gy min(-1) to 5.52 Gy min(-1). Lateral dose profile measurements showed the high spatial resolution of the microDiamond oriented with its stem perpendicular to the beam axis and with its small sensitive thickness of about 1 µm in the scanning profile direction. Finally, no significant LET dependence was found with these two diamond dosimeters in comparison to a reference ionization chamber (model IBA PPC05). These good results were in accordance to the literature. However, this study showed also a non reproducibility between the devices in terms of stability, sensitivity and LET dependence, since the two other microDiamonds characterized in this work showed different dosimetric characteristics making them not suitable for proton beam dosimetry with a maximum difference of the peak-to-plateau ratio of 6.7% relative to the reference ionization chamber in a clinical 138 MeV proton beam.


Assuntos
Terapia com Prótons/métodos , Dosímetros de Radiação/normas , Diamante/química , Diamante/efeitos da radiação , Transferência Linear de Energia , Terapia com Prótons/instrumentação , Terapia com Prótons/normas , Radiometria/instrumentação , Radiometria/métodos
4.
Med Phys ; 41(7): 071702, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24989371

RESUMO

PURPOSE: In a previous work, output ratio (ORdet) measurements were performed for the 800 MU/min CyberKnife(®) at the Oscar Lambret Center (COL, France) using several commercially available detectors as well as using two passive dosimeters (EBT2 radiochromic film and micro-LiF TLD-700). The primary aim of the present work was to determine by Monte Carlo calculations the output factor in water (OFMC,w) and the [Formula: see text] correction factors. The secondary aim was to study the detector response in small beams using Monte Carlo simulation. METHODS: The LINAC head of the CyberKnife(®) was modeled using the PENELOPE Monte Carlo code system. The primary electron beam was modeled using a monoenergetic source with a radial gaussian distribution. The model was adjusted by comparisons between calculated and measured lateral profiles and tissue-phantom ratios obtained with the largest field. In addition, the PTW 60016 and 60017 diodes, PTW 60003 diamond, and micro-LiF were modeled. Output ratios with modeled detectors (ORMC,det) and OFMC,w were calculated and compared to measurements, in order to validate the model for smallest fields and to calculate [Formula: see text] correction factors, respectively. For the study of the influence of detector characteristics on their response in small beams; first, the impact of the atomic composition and the mass density of silicon, LiF, and diamond materials were investigated; second, the material, the volume averaging, and the coating effects of detecting material on the detector responses were estimated. Finally, the influence of the size of silicon chip on diode response was investigated. RESULTS: Looking at measurement ratios (uncorrected output factors) compared to the OFMC,w, the PTW 60016, 60017 and Sun Nuclear EDGE diodes systematically over-responded (about +6% for the 5 mm field), whereas the PTW 31014 Pinpoint chamber systematically under-responded (about -12% for the 5 mm field). ORdet measured with the SFD diode and PTW 60003 diamond detectors were in good agreement with OFMC,w except for the 5 mm field size (about -7.5% for the diamond and +3% for the SFD). A good agreement with OFMC,w was obtained with the EBT2 film and micro-LiF dosimeters (deviation less than 1.4% for all fields investigated). [Formula: see text] correction factors for several detectors used in this work have been calculated. The impact of atomic composition on the dosimetric response of detectors was found to be insignificant, unlike the mass density and size of the detecting material. CONCLUSIONS: The results obtained with the passive dosimeters showed that they can be used for small beam OF measurements without correction factors. The study of detector response showed that ORdet is depending on the mass density, the volume averaging, and the coating effects of the detecting material. Each effect was quantified for the PTW 60016 and 60017 diodes, the micro-LiF, and the PTW 60003 diamond detectors. None of the active detectors used in this work can be recommended as a reference for small field dosimetry, but an improved diode detector with a smaller silicon chip coated with tissue-equivalent material is anticipated (by simulation) to be a reliable small field dosimetric detector in a nonequilibrium field.


Assuntos
Modelos Teóricos , Método de Monte Carlo , Aceleradores de Partículas/instrumentação , Radiometria/instrumentação , Radiocirurgia/instrumentação , Algoritmos , Simulação por Computador , Elétrons , Desenho de Equipamento , Distribuição Normal , Imagens de Fantasmas , Fótons/uso terapêutico , Radiometria/métodos , Radiocirurgia/métodos , Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...