Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 9: 953582, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277782

RESUMO

Thrombogenicity remains a major issue in cardiovascular implants (CVIs). Complete surficial coverage of CVIs by a monolayer of endothelial cells (ECs) prior to implantation represents a promising strategy but is hampered by the overall logistical complexity and the high number of cells required. Consequently, extensive cell expansion is necessary, which may eventually lead to replicative senescence. Considering that micro-structured surfaces with anisotropic topography may promote endothelialization, we investigated the impact of gratings on the biomechanical properties and the replicative capacity of senescent ECs. After cultivation on gridded surfaces, the cells showed significant improvements in terms of adherens junction integrity, cell elongation, and orientation of the actin filaments, as well as enhanced yes-associated protein nuclear translocation and cell proliferation. Our data therefore suggest that micro-structured surfaces with anisotropic topographies may improve long-term endothelialization of CVIs.

3.
Nat Commun ; 13(1): 81, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013172

RESUMO

Despite the high prevalence of ischemic heart diseases worldwide, no antibody-based treatment currently exists. Starting from the evidence that a specific isoform of the Bone Morphogenetic Protein 1 (BMP1.3) is particularly elevated in both patients and animal models of myocardial infarction, here we assess whether its inhibition by a specific monoclonal antibody reduces cardiac fibrosis. We find that this treatment reduces collagen deposition and cross-linking, paralleled by enhanced cardiomyocyte survival, both in vivo and in primary cultures of cardiac cells. Mechanistically, we show that the anti-BMP1.3 monoclonal antibody inhibits Transforming Growth Factor ß pathway, thus reducing myofibroblast activation and inducing cardioprotection through BMP5. Collectively, these data support the therapeutic use of anti-BMP1.3 antibodies to prevent cardiomyocyte apoptosis, reduce collagen deposition and preserve cardiac function after ischemia.


Assuntos
Anticorpos Monoclonais/farmacologia , Proteína Morfogenética Óssea 1/genética , Cardiotônicos/farmacologia , Cicatriz/genética , Fibrose Endomiocárdica/genética , Infarto do Miocárdio/genética , Animais , Proteína Morfogenética Óssea 1/antagonistas & inibidores , Proteína Morfogenética Óssea 1/metabolismo , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 5/genética , Proteína Morfogenética Óssea 5/metabolismo , Estudos de Casos e Controles , Sobrevivência Celular/efeitos dos fármacos , Cicatriz/etiologia , Cicatriz/metabolismo , Cicatriz/prevenção & controle , Modelos Animais de Doenças , Fibrose Endomiocárdica/etiologia , Fibrose Endomiocárdica/metabolismo , Fibrose Endomiocárdica/prevenção & controle , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/complicações , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Cultura Primária de Células , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Troponina T/genética , Troponina T/metabolismo
4.
Nat Commun ; 12(1): 4808, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376683

RESUMO

Myocardial regeneration is restricted to early postnatal life, when mammalian cardiomyocytes still retain the ability to proliferate. The molecular cues that induce cell cycle arrest of neonatal cardiomyocytes towards terminally differentiated adult heart muscle cells remain obscure. Here we report that the miR-106b~25 cluster is higher expressed in the early postnatal myocardium and decreases in expression towards adulthood, especially under conditions of overload, and orchestrates the transition of cardiomyocyte hyperplasia towards cell cycle arrest and hypertrophy by virtue of its targetome. In line, gene delivery of miR-106b~25 to the mouse heart provokes cardiomyocyte proliferation by targeting a network of negative cell cycle regulators including E2f5, Cdkn1c, Ccne1 and Wee1. Conversely, gene-targeted miR-106b~25 null mice display spontaneous hypertrophic remodeling and exaggerated remodeling to overload by derepression of the prohypertrophic transcription factors Hand2 and Mef2d. Taking advantage of the regulatory function of miR-106b~25 on cardiomyocyte hyperplasia and hypertrophy, viral gene delivery of miR-106b~25 provokes nearly complete regeneration of the adult myocardium after ischemic injury. Our data demonstrate that exploitation of conserved molecular programs can enhance the regenerative capacity of the injured heart.


Assuntos
MicroRNAs/genética , Infarto do Miocárdio/genética , Miócitos Cardíacos/metabolismo , Regeneração/genética , Animais , Animais Recém-Nascidos , Cardiomegalia/genética , Células Cultivadas , Ecocardiografia , Regulação da Expressão Gênica , Humanos , Hiperplasia/genética , Camundongos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Nano Lett ; 21(12): 4911-4920, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34081865

RESUMO

Endothelial senescence entails alterations of the healthy cell phenotype, which accumulate over time and contribute to cardiovascular disease. Mechanical aspects regulating cell adhesion, force generation, and the response to flow contribute to the senescence-associated drift; however, they remain largely unexplored. Here, we exploit force microscopy to resolve variations of the cell anchoring to the substrate and the tractions generated upon aging in the nanonewton (nN) range. Senescent endothelial cells display a multifold increase in the levels of basal adhesion and force generation supported by mature and strong focal adhesions. The enhanced mechanical interaction with the substrate yields static endothelial monolayers that polarize in response to flow but fail the process of coordinated cell shape remodeling and reorientation. The emerging picture indicates that senescence reinforces the local cell interaction with the substrate and may therefore prevent endothelial denudation; however, it compromises the ability to functionally adapt to the local hemodynamic conditions.


Assuntos
Células Endoteliais , Adesões Focais , Adesão Celular , Comunicação Celular , Células Cultivadas , Estresse Mecânico
6.
Biomaterials ; 273: 120816, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33895492

RESUMO

Endothelialization strategies aim at protecting the surface of cardiovascular devices upon their interaction with blood by the generation and maintenance of a mature monolayer of endothelial cells. Rational engineering of the surface micro-topography at the luminal interface provides a powerful access point to support the survival of a living endothelium under the challenging hemodynamic conditions created by the implant deployment and function. Surface structuring protocols must however be adapted to the complex, non-planar architecture of the target device precluding the use of standard lithographic approaches. Here, a novel patterning method, harnessing the condensation and evaporation of water droplets on a curing liquid elastomer, is developed to introduce arrays of microscale wells on the surface of a biocompatible silicon layer. The resulting topographies support the in vitro generation of mature human endothelia and their maintenance under dynamic changes of flow direction or magnitude, greatly outperforming identical, but flat substrates. The structuring approach is additionally demonstrated on non-planar interfaces yielding comparable topographies. The intrinsically free-form patterning is therefore compatible with a complete and stable endothelialization of complex luminal interfaces in cardiovascular implants.


Assuntos
Sistema Cardiovascular , Células Endoteliais , Endotélio , Humanos
7.
ERJ Open Res ; 5(4)2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31857992

RESUMO

RATIONALE: Alveolar type II (ATII) cells act as adult stem cells contributing to alveolar type I (ATI) cell renewal and play a major role in idiopathic pulmonary fibrosis (IPF), as supported by familial cases harbouring mutations in genes specifically expressed by these cells. During IPF, ATII cells lose their regenerative potential and aberrantly express pathways contributing to epithelial-mesenchymal transition (EMT). The microRNA miR-200 family is downregulated in IPF, but its effect on human IPF ATII cells remains unproven. We wanted to 1) evaluate the characteristics and transdifferentiating ability of IPF ATII cells, and 2) test whether miR-200 family members can rescue the regenerative potential of fibrotic ATII cells. METHODS: ATII cells were isolated from control or IPF lungs and cultured in conditions promoting their transdifferentiation into ATI cells. Cells were either phenotypically monitored over time or transfected with miR-200 family members to evaluate the microRNA effect on the expression of transdifferentiation, senescence and EMT markers. RESULTS: IPF ATII cells show a senescent phenotype (p16 and p21), overexpression of EMT (ZEB1/2) and impaired expression of ATI cell markers (AQP5 and HOPX) after 6 days of culture in differentiating medium. Transfection with certain miR-200 family members (particularly miR-200b-3p and miR-200c-3p) reduced senescence marker expression and restored the ability to transdifferentiate into ATI cells. CONCLUSIONS: We demonstrated that ATII cells from IPF patients express senescence and EMT markers, and display a reduced ability to transdifferentiate into ATI cells. Transfection with certain miR-200 family members rescues this phenotype, reducing senescence and restoring transdifferentiation marker expression.

8.
Data Brief ; 25: 104324, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31453298

RESUMO

The data and information presented here refer to the research article entitled: "Reactivating endogenous mechanisms of cardiac regeneration via paracrine boosting with the human amniotic fluid stem cell secretome" (Balbi et al., 2019, Apr 04). This dataset illustrates the in vitro paracrine effect exerted by the human amniotic fluid stem cell secretome on rodent neonatal cardiomyocytes, human endothelial progenitors and different subsets of cardiac progenitor cells. Cytokine/chemokine profiling of the human amniotic fluid stem cell secretome is provided as well. This data can provide useful insights in regenerative medicine as demonstrating the in vitro cardioprotective and proliferative secretory paracrine potential of human fetal stem cells.

9.
Int J Cardiol ; 287: 87-95, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30987834

RESUMO

BACKGROUND: The adult mammalian heart retains residual regenerative capability via endogenous cardiac progenitor cell (CPC) activation and cardiomyocyte proliferation. We previously reported the paracrine cardioprotective capacity of human amniotic fluid-derived stem cells (hAFS) following ischemia or cardiotoxicity. Here we analyse the potential of hAFS secretome fractions for cardiac regeneration and future clinical translation. METHODS: hAFS were isolated from amniotic fluid leftover samples from prenatal screening. hAFS conditioned medium (hAFS-CM) was obtained following hypoxic preconditioning. Anti-apoptotic, angiogenic and proliferative effects were evaluated on rodent neonatal cardiomyocytes (r/mNVCM), human endothelial colony forming cells (hECFC) and human CPC. Mice undergoing myocardial infarction (MI) were treated with hAFS-CM, hAFS-extracellular vesicles (hAFS-EV), or EV-depleted hAFS-CM (hAFS-DM) by single intra-myocardial administration and evaluated in the short and long term. RESULTS: hAFS-CM improved mNVCM survival under oxidative and hypoxic damage, induced Ca2+-dependent angiogenesis in hECFC and triggered hCPC and rNVCM proliferation. hAFS-CM treatment after MI counteracted scarring, supported cardiac function, angiogenesis and cardiomyocyte cell cycle progression in the long term. hAFS-DM had no effect. hAFS-CM and hAFS-EV equally induced epicardium WT1+ CPC reactivation. Although no CPC cardiovascular differentiation was observed, our data suggests contribution to local angiogenesis by paracrine modulation. hAFS-EV alone were able to recapitulate all the beneficial effects exerted by hAFS-CM, except for stimulation of vessel formation. CONCLUSIONS: hAFS-CM and hAFS-EV can improve cardiac repair and trigger cardiac regeneration via paracrine modulation of endogenous mechanisms. While both formulations are effective in sustaining myocardial renewal, hAFS-CM retains higher pro-angiogenic potential, while hAFS-EV particularly enhances cardiac function.


Assuntos
Líquido Amniótico/citologia , Insuficiência Cardíaca/terapia , Miócitos Cardíacos/patologia , Comunicação Parácrina/fisiologia , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Animais , Animais Recém-Nascidos , Diferenciação Celular , Células Cultivadas , Meios de Cultivo Condicionados , Modelos Animais de Doenças , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Miócitos Cardíacos/metabolismo , Ratos , Células-Tronco/metabolismo
10.
Nat Commun ; 9(1): 2432, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29946151

RESUMO

Cardiomyocyte proliferation stops at birth when the heart is no longer exposed to maternal blood and, likewise, to regulatory T cells (Tregs) that are expanded to promote maternal tolerance towards the fetus. Here, we report a role of Tregs in promoting cardiomyocyte proliferation. Treg-conditioned medium promotes cardiomyocyte proliferation, similar to the serum from pregnant animals. Proliferative cardiomyocytes are detected in the heart of pregnant mothers, and Treg depletion during pregnancy decreases both maternal and fetal cardiomyocyte proliferation. Treg depletion after myocardial infarction results in depressed cardiac function, massive inflammation, and scarce collagen deposition. In contrast, Treg injection reduces infarct size, preserves contractility, and increases the number of proliferating cardiomyocytes. The overexpression of six factors secreted by Tregs (Cst7, Tnfsf11, Il33, Fgl2, Matn2, and Igf2) reproduces the therapeutic effect. In conclusion, Tregs promote fetal and maternal cardiomyocyte proliferation in a paracrine manner and improve the outcome of myocardial infarction.


Assuntos
Proliferação de Células , Terapia Baseada em Transplante de Células e Tecidos/métodos , Linfócitos T Reguladores/fisiologia , Animais , Células CHO , Cricetinae , Cricetulus , Meios de Cultivo Condicionados , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio , Miócitos Cardíacos , Gravidez , Ratos
11.
Sci Rep ; 7(1): 4802, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28684747

RESUMO

Diagnosis of Arrhythmogenic CardioMyopathy (ACM) is challenging and often late after disease onset. No circulating biomarkers are available to date. Given their involvement in several cardiovascular diseases, plasma microRNAs warranted investigation as potential non-invasive diagnostic tools in ACM. We sought to identify circulating microRNAs differentially expressed in ACM with respect to Healthy Controls (HC) and Idiopathic Ventricular Tachycardia patients (IVT), often in differential diagnosis. ACM and HC subjects were screened for plasmatic expression of 377 microRNAs and validation was performed in 36 ACM, 53 HC, 21 IVT. Variable importance in data partition was estimated through Random Forest analysis and accuracy by Receiver Operating Curves. Plasmatic miR-320a showed 0.53 ± 0.04 fold expression difference in ACM vs. HC (p < 0.01). A similar trend was observed when comparing ACM (n = 13) and HC (n = 17) with athletic lifestyle, a ACM precipitating factor. Importantly, ACM patients miR-320a showed 0.78 ± 0.05 fold expression change vs. IVT (p = 0.03). When compared to non-invasive ACM diagnostic parameters, miR-320a ranked highly in discriminating ACM vs. IVT and it increased their accuracy. Finally, miR-320a expression did not correlate with ACM severity. Our data suggest that miR-320a may be considered a novel potential biomarker of ACM, specifically useful in ACM vs. IVT differentiation.


Assuntos
Displasia Arritmogênica Ventricular Direita/diagnóstico , MicroRNAs/genética , Taquicardia Ventricular/diagnóstico , Adulto , Displasia Arritmogênica Ventricular Direita/sangue , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/fisiopatologia , Biomarcadores/sangue , Estudos de Casos e Controles , Diagnóstico Diferencial , Feminino , Humanos , Masculino , MicroRNAs/sangue , Pessoa de Meia-Idade , Curva ROC , Índice de Gravidade de Doença , Taquicardia Ventricular/sangue , Taquicardia Ventricular/genética , Taquicardia Ventricular/fisiopatologia
12.
J Tissue Eng ; 6: 2041731415611717, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26848383

RESUMO

In regenerative medicine, new approaches are required for the creation of tissue substitutes, and the interplay between different research areas, such as tissue engineering, microsurgery and gene therapy, is mandatory. In this article, we report a modification of a published model of tissue engineering, based on an arterio-venous loop enveloped in a cross-linked collagen-glycosaminoglycan template, which acts as an isolated chamber for angiogenesis and new tissue formation. In order to foster tissue formation within the chamber, which entails on the development of new vessels, we wondered whether we might combine tissue engineering with a gene therapy approach. Based on the well-described tropism of adeno-associated viral vectors for post-mitotic tissues, a muscular flap was harvested from the pectineus muscle, inserted into the chamber and transduced by either AAV vector encoding human VEGF165 or AAV vector expressing the reporter gene ß-galactosidase, as a control. Histological analysis of the specimens showed that muscle transduction by AAV vector encoding human VEGF165 resulted in enhanced tissue formation, with a significant increase in the number of arterioles within the chamber in comparison with the previously published model. Pectineus muscular flap, transduced by adeno-associated viral vectors, acted as a source of the proangiogenic factor vascular endothelial growth factor, thus inducing a consistent enhancement of vessel growth into the newly formed tissue within the chamber. In conclusion, our present findings combine three different research fields such as microsurgery, tissue engineering and gene therapy, suggesting and showing the feasibility of a mixed approach for regenerative medicine.

13.
Cancer Res ; 72(24): 6371-81, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23222303

RESUMO

Improving tumor perfusion, thus tempering tumor-associated hypoxia, is known to impair cancer progression. Previous work from our laboratory has shown that VEGF-A165 and semaphorin 3A (Sema3A) promote vessel maturation through the recruitment of a population of circulating monocytes expressing the neuropilin-1 (Nrp1) receptor (Nrp1-expressing monocytes; NEM). Here, we define the characteristics of bone marrow NEMs and assess whether these cells might represent an exploitable tool to induce tumor vessel maturation. Gene expression signature and surface marker analysis have indicated that NEMs represent a specific subset of CD11b+ Nrp1+ Gr1- resident monocytes, distinctively recruited by Sema3A. NEMs were found to produce several factors involved in vessel maturation, including PDGFb, TGF-ß, thrombospondin-1, and CXCL10; consistently, they were chemoattractive for vascular smooth muscle cells in vitro. When directly injected into growing tumors, NEMs, isolated either from the bone marrow or from Sema3A-expressing muscles, exerted antitumor activity despite having no direct effects on the proliferation of tumor cells. NEM inoculation specifically promoted mural cell coverage of tumor vessels and decreased vascular leakiness. Tumors treated with NEMs were smaller, better perfused and less hypoxic, and had a reduced level of activation of HIF-1α. We conclude that NEMs represent a novel, unique population of myeloid cells that, once inoculated into a tumor, induce tumor vessel normalization and inhibit tumor growth.


Assuntos
Proliferação de Células , Monócitos/fisiologia , Neoplasias/terapia , Neovascularização Patológica/prevenção & controle , Neuropilina-1/fisiologia , Inibidores da Angiogênese/genética , Inibidores da Angiogênese/metabolismo , Inibidores da Angiogênese/fisiologia , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/fisiologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/fisiologia , Transplante de Medula Óssea , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Neovascularização Patológica/terapia , Neuropilina-1/genética , Neuropilina-1/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/fisiologia
14.
Heart Lung Circ ; 21(12): 787-93, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22901461

RESUMO

BACKGROUND: It remains unclear whether idiopathic dilated cardiomyopathy (DCM) might ensue as the consequence of viral myocarditis, due to viral persistence in cardiomyocytes. To address this issue, we quantified the levels of enterovirus, Epstein-Barr virus (EBV), Herpes Simplex Virus-1 (HSV-1), Herpes Simplex Virus-2 (HSV-2), adenovirus and parvovirus B19 genomes in endomyocardial biopsies (EMBs) from patients with DCM, active myocarditis and controls. METHODS: Real-time polymerase chain reaction (PCR)-based methods using TaqMan probes were developed for the quantitative detection of viral genomes in EMBs from 35 patients with DCM and 17 with active myocarditis. A control group included 20 surgical patients with valve or coronary artery disease. RESULTS: None of the 72 samples tested positive for enteroviruses, EBV, HSV-1 or -2. One DCM patient tested positive for adenovirus. Of notice, 20/52 (38%) of patients with cardiomyopathy and 8/20 (40%) of controls were positive for parvovirus B19; no significant differences in viral titre were detected between groups. CONCLUSIONS: Our preliminary results disfavour the hypothesis that persistent myocardial viral infection might be a frequent cause of DCM. The detection of parvovirus B19 from both cardiomyopathy and non-cardiomyopathy patients supports the notion that this virus is widely spread in the population.


Assuntos
Cardiomiopatia Dilatada/complicações , Endocárdio/virologia , Viroses/complicações , Adenoviridae/isolamento & purificação , Adulto , Análise de Variância , Cardiomiopatia Dilatada/virologia , Enterovirus/isolamento & purificação , Feminino , Herpesvirus Humano 1/isolamento & purificação , Herpesvirus Humano 2/isolamento & purificação , Herpesvirus Humano 4/isolamento & purificação , Humanos , Masculino , Pessoa de Meia-Idade , Miocardite/virologia , Parvovirus B19 Humano/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real
15.
Am J Pathol ; 178(2): 924-34, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21281823

RESUMO

Insulin-like growth factor-1 (IGF-1) signaling is important for the maintenance of plaque stability in atherosclerosis due to its effects on vascular smooth muscle cell (vSMC) phenotype. To investigate this hypothesis, we studied the effects of the highly inflammatory milieu of the atherosclerotic plaque on IGF-1 signaling and stability-related phenotypic parameters of murine vSMCs in vitro, and the effects of IGF-1 supplementation on plaque phenotype in an atherosclerotic mouse model. M1-polarized, macrophage-conditioned medium inhibited IGF-1 signaling by ablating IGF-1 and increasing IGF-binding protein 3, increased vSMC apoptosis, and decreased proliferation. Expression of α-actin and col3a1 genes was strongly attenuated by macrophage-conditioned medium, whereas expression of matrix-degrading enzymes was increased. Importantly, all of these effects could be corrected by supplementation with IGF-1. In vivo, treatment with the stable IGF-1 analog Long R3 IGF-1 in apolipoprotein E knockout mice reduced stenosis and core size, and doubled cap/core ratio in early atherosclerosis. In advanced plaques, Long R3 IGF-1 increased the vSMC content of the plaque by more than twofold and significantly reduced the rate of intraplaque hemorrhage. We believe that IGF-1 in atherosclerotic plaques may have a role in preventing plaque instability, not only by modulating smooth muscle cell turnover, but also by altering smooth muscle cell phenotype.


Assuntos
Aterosclerose/patologia , Fator de Crescimento Insulin-Like I/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Placa Aterosclerótica/patologia , Animais , Aterosclerose/metabolismo , Western Blotting , Movimento Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/genética , Camundongos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Fenótipo , Placa Aterosclerótica/metabolismo , Isoformas de Proteínas/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Circ Res ; 106(12): 1893-903, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20431055

RESUMO

RATIONALE: Vascular endothelial growth factor (VEGF)-B selectively binds VEGF receptor (VEGFR)-1, a receptor that does not mediate angiogenesis, and is emerging as a major cytoprotective factor. OBJECTIVE: To test the hypothesis that VEGF-B exerts non-angiogenesis-related cardioprotective effects in nonischemic dilated cardiomyopathy. METHODS AND RESULTS: AAV-9-carried VEGF-B(167) cDNA (10(12) genome copies) was injected into the myocardium of chronically instrumented dogs developing tachypacing-induced dilated cardiomyopathy. After 4 weeks of pacing, green fluorescent protein-transduced dogs (AAV-control, n=8) were in overt congestive heart failure, whereas the VEGF-B-transduced (AAV-VEGF-B, n=8) were still in a well-compensated state, with physiological arterial Po(2). Left ventricular (LV) end-diastolic pressure in AAV-VEGF-B and AAV-control was, respectively, 15.0+/-1.5 versus 26.7+/-1.8 mm Hg and LV regional fractional shortening was 9.4+/-1.6% versus 3.0+/-0.6% (all P<0.05). VEGF-B prevented LV wall thinning but did not induce cardiac hypertrophy and did not affect the density of alpha-smooth muscle actin-positive microvessels, whereas it normalized TUNEL-positive cardiomyocytes and caspase-9 and -3 activation. Consistently, activated Akt, a major negative regulator of apoptosis, was superphysiological in AAV-VEGF-B, whereas the proapoptotic intracellular mediators glycogen synthase kinase (GSK)-3beta and FoxO3a (Akt targets) were activated in AAV-control, but not in AAV-VEGF-B. Cardiac VEGFR-1 expression was reduced 4-fold in all paced dogs, suggesting that exogenous VEGF-B(167) exerted a compensatory receptor stimulation. The cytoprotective effects of VEGF-B(167) were further elucidated in cultured rat neonatal cardiomyocytes exposed to 10(-8) mol/L angiotensin II: VEGF-B(167) prevented oxidative stress, loss of mitochondrial membrane potential, and, consequently, apoptosis. CONCLUSIONS: We determined a novel, angiogenesis-unrelated cardioprotective effect of VEGF-B(167) in nonischemic dilated cardiomyopathy, which limits apoptotic cell loss and delays the progression toward failure.


Assuntos
Cardiomiopatias/complicações , Progressão da Doença , Insuficiência Cardíaca/prevenção & controle , Miocárdio/metabolismo , Fator B de Crescimento do Endotélio Vascular/genética , Fator B de Crescimento do Endotélio Vascular/metabolismo , Adenoviridae/genética , Animais , Cardiomiopatias/metabolismo , Células Cultivadas , DNA Complementar/genética , Modelos Animais de Doenças , Cães , Técnicas de Transferência de Genes , Insuficiência Cardíaca/metabolismo , Masculino , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Neuropilina-1/metabolismo , Estresse Oxidativo/fisiologia , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
J Oral Pathol Med ; 39(5): 390-6, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20202091

RESUMO

The aim of this study was to evaluate a novel animal model of bisphosphonates-associated osteonecrosis, which realistically recapitulates the same pathological human condition. Five Wistar rats were given intravenous zoledronic acid 0.04 mg once a week for 5 weeks. After 2 weeks, the animals underwent the extraction of an upper molar, producing a 4 mm-diameter bone defect on the same site. After 7 weeks from the extraction, the animals were clinically examined and a bone scintigraphy was carried out. After an additional week, the rats were killed and both Computerized Tomography and histological analysis were performed. Five rats, not treated with zoledronic acid and exposed to the same surgical treatment, were used as controls. At 7 weeks after the extraction, all the rats treated with zoledronic acid showed expansion of the defect and bone exposure. These features were confirmed by bone scintigraphy. The rats of the control group demonstrated epithelialization of the bone defect and a normal uptake of the contrast medium during the scan. The Computerized Tomography scan disclosed irregularity of the cortical margin and bone destruction, which were not evident in the control group. On microscopy, the samples showed necrotic bone, loss of osteocytes and peripheral resorption without inflammatory infiltrate, while the controls showed normal bone healing. The rat treated with zoledronic acid can be considered a novel, reliable and reproducible animal model to understand better the pathophysiology of osteonecrosis of the jaw and to develop a therapeutic approach.


Assuntos
Conservadores da Densidade Óssea/efeitos adversos , Difosfonatos/efeitos adversos , Modelos Animais de Doenças , Imidazóis/efeitos adversos , Doenças Maxilomandibulares/fisiopatologia , Osteonecrose/fisiopatologia , Animais , Conservadores da Densidade Óssea/administração & dosagem , Difosfonatos/administração & dosagem , Feminino , Imidazóis/administração & dosagem , Injeções Intravenosas , Doenças Maxilomandibulares/induzido quimicamente , Doenças Maxilomandibulares/diagnóstico por imagem , Doenças Maxilares/induzido quimicamente , Doenças Maxilares/diagnóstico por imagem , Doenças Maxilares/fisiopatologia , Osteonecrose/induzido quimicamente , Osteonecrose/diagnóstico por imagem , Cintilografia , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Extração Dentária/efeitos adversos , Ácido Zoledrônico
18.
Cardiovasc Res ; 83(4): 663-71, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19443424

RESUMO

AIMS: Members of the vascular endothelial growth factor (VEGF) family are among the most promising cytokines to induce neovascularization of ischaemic tissues; however, their unregulated expression often results in major undesired effects. Here, we describe the properties of inducible vectors based on the adeno-associated virus (AAV), allowing precise control of VEGF expression, and exploit these vectors to define the kinetics of the angiogenic response elicited by the factor. METHODS AND RESULTS: Based on a tetracycline-inducible transactivator, we designed an AAV vector system allowing the pharmacological regulation of VEGF production in vivo and tested its efficacy in inducing functional neoangiogenesis in both normoperfused and ischaemic skeletal muscle in mice by a combination of histological, immunofluorescent, and molecular imaging techniques. We observed that a prolonged expression of VEGF was required to determine the formation of stable vessels, able to persist upon withdrawal of the angiogenic stimulus. However, the vessels formed in the presence of continuous VEGF expression consisted mainly of dilated and leaky capillaries. As determined after pinhole scintigraphy, this abnormal vasculature accounted for a significant drop in functional tissue perfusion. In contrast, transient VEGF expression, followed by a period of VEGF withdrawal, allowed maintenance of functional perfusion under resting conditions and during exercise. This VEGF-inducible system was highly effective in improving vascularization and function in a hind-limb ischaemia model. CONCLUSION: Together, these results clearly indicate that the fine tuning of VEGF expression is required to achieve the formation of a stable vasculature able to sustain functional neovascularization.


Assuntos
Dependovirus/genética , Vetores Genéticos , Neovascularização Fisiológica , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Doxiciclina/administração & dosagem , Expressão Gênica/efeitos dos fármacos , Humanos , Isquemia/metabolismo , Isquemia/patologia , Isquemia/terapia , Camundongos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/uso terapêutico
19.
J Clin Invest ; 118(6): 2062-75, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18483621

RESUMO

Experimental and clinical evidence indicate that bone marrow cells participate in the process of new blood vessel formation. However, the molecular mechanisms underlying their recruitment and their exact role are still elusive. Here, we show that bone marrow cells are recruited to the sites of neoangiogenesis through the neuropilin-1 (NP-1) receptor and that they are essential for the maturation of the activated endothelium and the formation of arteries in mice. By exploiting adeno-associated virus vector-mediated, long-term in vivo gene expression, we show that the 165-aa isoform of VEGF, which both activates the endothelium and recruits NP-1+ myeloid cells, is a powerful arteriogenic agent. In contrast, neither the shortest VEGF121 isoform, which does not bind NP-1 and thus does not recruit bone marrow cells, nor semaphorin 3A, which attracts cells but inhibits endothelial activation, are capable of sustaining arterial formation. Bone marrow myeloid cells are not arteriogenic per se nor are they directly incorporated in the newly formed vasculature, but they contribute to arterial formation through a paracrine effect ensuing in the activation and proliferation of tissue-resident smooth muscle cells.


Assuntos
Artérias/patologia , Células da Medula Óssea/citologia , Neuropilina-1/fisiologia , Animais , Células da Medula Óssea/metabolismo , Antígeno CD11b/biossíntese , Proliferação de Células , Dependovirus/metabolismo , Regulação da Expressão Gênica , Terapia Genética/métodos , Camundongos , Neovascularização Patológica , Neuropilina-1/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/biossíntese , Semaforina-3A/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Microsurgery ; 27(7): 623-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17868145

RESUMO

BACKGROUND: Microsurgical tissue engineering is an emerging topic in regenerative medicine. Here we describe a new microsurgical model of bioengineering in rats based on the use of an arterovenous loop (AV) implanted into a commercially available crosslinked collagen/glycosaminoglycan template. METHODS: The microvascular loop was created between the femoral artery and vein and covered by the template folded onto itself. The chamber was isolated from the outside tissue by an outer silicon layer to impede tissue ingrowth. RESULTS: At 1-month postimplantation, the tissue chamber was found heavily vascularized, as assessed by laser Doppler perfusion analysis. Histological examination showed that the AV loop was integrated into the collagen matrix of the template and that the whole template was filled with a newly formed soft connective tissue. Most interestingly, the whole scaffold was found heavily vascularized, including the formation of a large number of alpha-SMA-positive arterioles. CONCLUSIONS: The developed microsurgical chamber provides a highly vascular, isolated tool for in vivo tissue engineering.


Assuntos
Artéria Femoral/cirurgia , Veia Femoral/cirurgia , Microcirurgia , Engenharia Tecidual/métodos , Anastomose Cirúrgica , Animais , Colágeno , Reagentes de Ligações Cruzadas , Cultura em Câmaras de Difusão , Glicosaminoglicanos , Masculino , Ratos , Ratos Wistar , Engenharia Tecidual/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...