Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 5(7): 3734-3742, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32118189

RESUMO

We report a thermoresponsive double hydrophilic block copolymer degradable in response to dual reduction and acidic pH at dual locations. The copolymer consists of a poly(ethylene oxide) block covalently connected through an acid-labile acetal linkage with a thermoresponsive polymethacrylate block containing pendant oligo(ethylene oxide) and disulfide groups. The copolymer undergoes temperature-driven self-assembly in water to form nanoassemblies with acetal linkages at the core/corona interface and disulfide pendants in the core, exhibiting dual reduction/acid responses at dual locations. The physically assembled nanoaggregates are converted to disulfide-core-crosslinked nanogels through disulfide-thiol exchange reaction, retaining enhanced colloidal stability, yet degraded to water-soluble unimers upon reduction/acid-responsive degradation. Further, the copolymer exhibits improved tunability of thermoresponsive property upon the cleavage of junction acetal and pendant disulfide linkages individually and in combined manner. This work suggests that dual location dual reduction/acid-responsive degradation is a versatile strategy toward effective drug delivery exhibiting disulfide-core-crosslinking capability and disassembly as well as improved thermoresponsive tunability.

2.
ACS Appl Mater Interfaces ; 12(1): 177-190, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31820915

RESUMO

Microfluidic flow-directed self-assembly of biological stimuli-responsive block copolymers is demonstrated with dual-location cleavable linkages at the junction between hydrophilic and hydrophobic blocks and on pendant group within the hydrophobic blocks. On-chip self-assembly within a two-phase microfluidic reactor forms various "DualM" polymer nanoparticles (PNPs), including cylinders and multicompartment vesicles, with sizes and morphologies that are tunable with manufacturing flow rate. Complex kinetically trapped intermediates between shear-dependent states provide the most detailed mechanism to date of microfluidic PNP formation in the presence of flow-variable high shear. Glutathione (GSH)-triggered changes in PNP size and internal structure depend strongly on the initial flow-directed size and internal structure. Upon incubation in GSH, flow-directed PNPs with smaller average sizes showed a faster hydrodynamic size increase (attributed to junction cleavage) and those with higher excess Gibbs free energy showed faster inner compartment growth (attributed to pendant cleavage). These results demonstrate that the combination of chemical control of the location of biologically responsive linkages with microfluidic shear processing offers promising routes for tunable "smart" polymeric nanomedicines.


Assuntos
Sistemas de Liberação de Medicamentos , Técnicas Analíticas Microfluídicas , Nanopartículas/química , Polímeros Responsivos a Estímulos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...