Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 189: 114711, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36807047

RESUMO

The best-selling compostable plastics, polylactic acid (PLA) and polybutylene adipate-co-terephthalate (PBAT), can accidentally end up in the marine environment due to plastic waste mismanagement. Their degradation and colonization by microbial communities are poorly documented in marine conditions. To better understand their degradation, as well as the dynamics of bacterial colonization after a long immersion time (99, 160, and 260 days), PBAT, semicrystalline, and amorphous PLA films were immersed in a marine aquarium. Sequencing and chemical analyses were used in parallel to characterize these samples. Despite the variation in the chemical intrinsic parameters of these plastics, their degradation remains very slow. Microbial community structure varied according to the immersion time with a high proportion of Archaea. Moreover, the plastisphere structure of PBAT was specific. A better understanding of compostable plastic degradability is crucial to evaluate their impact on ecosystems and to eco-design new recyclable plastics with optimal degradation properties.


Assuntos
Plásticos Biodegradáveis , Microbiota , Polímeros , Imersão , Poliésteres , Plásticos/metabolismo , Biofilmes
2.
J Hazard Mater ; 419: 126526, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34328083

RESUMO

Different plastic types considered as compostable are found on the market such as petro-based (e.g., polybutylene adipate terephthalate (PBAT)) or bio-based plastics (e.g., polylactic acid, (PLA)). Even if their degradation has been confirmed in industrial compost conditions, investigation of their degradation in natural marine environment has been limited. To better understand biodegradation into natural marine environment, commercial compostable (PBAT, semi-crystalline and amorphous PLA) and non-compostable polymers (low density polyethylene, polystyrene, polyethylene terephthalate, polyvinyl chloride) were submerged in situ on the sediment and in the water column in the Mediterranean Sea. These samples were studied by chemical and microbiological approaches. After 82 days of immersion, no significant bacterial degradation of the different polymers was observed, except some abiotic alterations of PBAT and LDPE probably due to a photooxidation process. However, after 80 days in an enrichment culture containing plastic films as a main carbon source, Marinomonas genus was specifically selected on the PBAT and a weight loss of 12% was highlighted. A better understanding of the bacterial community colonizing these plastics is essential for an eco-design of new biodegradable polymers to allow a rapid degradation in aquatic environment.


Assuntos
Compostagem , Polímeros , Biodegradação Ambiental , Biofilmes , Plásticos
3.
J Am Soc Mass Spectrom ; 31(11): 2379-2388, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33044069

RESUMO

Synthetic polymers occupy a unique place in the field of ion mobility mass spectrometry (IMS-MS). Indeed, due to their intrinsic dispersity, they have the asset to offer a broad range of homologous ions with different lengths that can be detected in several charge states. In addition, the gas-phase structure of polymer ions mostly depends on their ability to screen the adducted charges. Several works dealing with linear, cyclic, and star-shaped polymers have already shown that the gas-phase structure of polymer ions heavily relies on the polymer architecture, i.e., the primary structure. In the present work, we move a step further by evaluating whether a relationship exists between the primary and secondary structures of synthetic homo and copolymers. The IMS-MS experiments will be further complemented by MD simulations. To highlight the effectiveness of IMS separation, we selected isomeric homo and copolymers made of lactide (LA) and propiolactone (PL) units. In this way, the mass analysis becomes useless since isomeric comonomer sequences can coexist for any given chain length. An UPLC method was implemented in the workflow to successfully separate all PL-LA comonomer sequences before infusion in the IMS-MS instrument. The analysis of doubly charged copolymers showed that the comonomer sequence has an impact on the IMS response. However, this only holds for copolymer ions with precise sizes and charge states, and this is therefore not a rule of thumb.

4.
Materials (Basel) ; 13(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861398

RESUMO

In this study, a highly efficient flame-retardant bioplastic poly(lactide) was developed by covalently incorporating flame-retardant DOPO, that is, 9,10-dihydro-oxa-10-phosphaphenanthrene-10-oxide. To that end, a three-step strategy that combines the catalyzed ring-opening polymerization (ROP) of L,L-lactide (L,L-LA) in bulk from a pre-synthesized DOPO-diamine initiator, followed by bulk chain-coupling reaction by reactive extrusion of the so-obtained phosphorylated polylactide (PLA) oligomers (DOPO-PLA) with hexamethylene diisocyanate (HDI), is described. The flame retardancy of the phosphorylated PLA (DOPO-PLA-PU) was investigated by mass loss cone calorimetry and UL-94 tests. As compared with a commercially available PLA matrix, phosphorylated PLA shows superior flame-retardant properties, that is, (i) significant reduction of both the peak of heat release rate (pHRR) and total heat release (THR) by 35% and 36%, respectively, and (ii) V0 classification at UL-94 test. Comparisons between simple physical DOPO-diamine/PLA blends and a DOPO-PLA-PU material were also performed. The results evidenced the superior flame-retardant behavior of phosphorylated PLA obtained by a reactive pathway.

5.
Polymers (Basel) ; 11(4)2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995722

RESUMO

Several families of polymers possessing various end-groups are characterized by ion mobility mass spectrometry (IMMS). A significant contribution of the end-groups to the ion collision cross section (CCS) is observed, although their role is neglected in current fitting models described in literature. Comparing polymers prepared from different synthetic procedures might thus, be misleading with the current theoretical treatments. We show that this issue is alleviated by comparing the CCS of various polymer ions (polyesters and polyethers) as a function of the number of atoms in the macroion instead of the usual representation involving the degree of polymerization. Finally, we extract the atom number density from the spectra which gives us the possibility to evaluate the compaction of polymer ions, and by extension to discern isomeric polymers.

6.
J Colloid Interface Sci ; 536: 499-506, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30384055

RESUMO

HYPOTHESIS: Since the emergence of the molecular-kinetic theory and the hydrodynamic approach, it is generally accepted that the displacement of the contact line is controlled by the viscous or frictional channel of energy dissipation for respectively high-viscosity and low-viscosity liquids. However, how the dissipation switches from one channel to another is still unknown. We therefore hypothesized that, by progressively changing the viscosity of a liquid, a better understanding of the underlying mechanism driving this wetting dynamic transition would be obtained. EXPERIMENTS: Performing capillary rise experiments of polydimethylsiloxane on a poly(ethylene terephthalate) fiber at different temperatures, i.e. at different liquid viscosities, we characterized the transition between the viscous and frictional regimes. The fiber surface topography was also characterized and its effect on the wetting dynamics was quantified. FINDINGS: The wetting dynamics switched from one regime to the other in a very short viscosity interval. Besides, the wetting behavior in the transition region is sensitive to the fiber surface topography. The presence or the absence of a liquid rim ahead of the contact line actually determines the dominant channel of dissipation.

7.
J Mater Chem B ; 3(4): 612-619, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32262343

RESUMO

The preparation of polyethylenimine (PEI)-polylactide (PLA) copolymer structures is promising as these materials may find use in gene and/or drug delivery applications. In the current work we have explored the utilization of linear polyethylenimine (L-PEI) as multifunctional initiator for the organocatalytic ring-opening polymerization of lactide. Evaluation of the effect of the amount of catalyst revealed that with high catalyst loadings mixtures of unmodified L-PEI and PEI-PLA were obtained while low catalyst loadings leads to efficient preparation of PEI-PLA graft copolymers. This difference is described to the enhanced polymerization time with lower catalyst loading enabling efficient initiation from up to every second ethylenimine unit. The resulting PEI-PLA were subsequently formulated into nanoparticles of ∼400 nm by nanoprecipitation, which could be efficiently labeled with rhodamine octadecylester as model hydrophobic drug. These nanoparticles were efficiently taken up by DC2.4 cells as demonstrated by flow cytometry and fluorescence microscopy demonstrating their potential for gene and/or drug delivery applications.

8.
Chem Commun (Camb) ; (3): 340-1, 2003 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-12613602

RESUMO

Solvent-free synthesis of well-defined poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) (co)polymers was performed by atom transfer radical polymerization conducted under very mild conditions (in bulk at 25 degrees C). The pH-dependence and the thermo-responsive behaviour of PDMAEMA in aqueous solution were operated to isolate and purify the (co)polymers without using any organic solvent or further catalyst extraction. The viscosity in aqueous solution of so-purified PDMAEMA homopolymers and their block copolymers with poly(ethylene glycol) (PEG) was studied as a function of molar mass and concentration and a typical polyelectrolyte behaviour was observed, these catalyst-deprived polycations are able to form stable and non toxic complexes with DNA, showing good transfection efficacies in gene therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...