Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168294

RESUMO

Pathogenic variants in subunits of RNA polymerase (Pol) III cause a spectrum of Polr3-related neurodegenerative diseases including 4H leukodystrophy. Disease onset occurs from infancy to early adulthood and is associated with a variable range and severity of neurological and non-neurological features. The molecular basis of Polr3-related disease pathogenesis is unknown. We developed a postnatal whole-body mouse model expressing pathogenic Polr3a mutations to examine the molecular mechanisms by which reduced Pol III transcription results primarily in central nervous system phenotypes. Polr3a mutant mice exhibit behavioral deficits, cerebral pathology and exocrine pancreatic atrophy. Transcriptome and immunohistochemistry analyses of cerebra during disease progression show a reduction in most Pol III transcripts, induction of innate immune and integrated stress responses and cell type-specific gene expression changes reflecting neuron and oligodendrocyte loss and microglial activation. Earlier in the disease when integrated stress and innate immune responses are minimally induced, mature tRNA sequencing revealed a global reduction in tRNA levels and an altered tRNA profile but no changes in other Pol III transcripts. Thus, changes in the size and/or composition of the tRNA pool have a causal role in disease initiation. Our findings reveal different tissue- and brain region-specific sensitivities to a defect in Pol III transcription.

2.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34583988

RESUMO

RNA polymerase (Pol) III synthesizes abundant short noncoding RNAs that have essential functions in protein synthesis, secretion, and other processes. Despite the ubiquitous functions of these RNAs, mutations in Pol III subunits cause Pol III-related leukodystrophy, an early-onset neurodegenerative disease. The basis of this neural sensitivity and the mechanisms of disease pathogenesis are unknown. Here we show that mice expressing pathogenic mutations in the largest Pol III subunit, Polr3a, specifically in Olig2-expressing cells, have impaired growth and developmental delay, deficits in cognitive, sensory, and fine sensorimotor function, and hypomyelination in multiple regions of the cerebrum and spinal cord. These phenotypes reflect a subset of clinical features seen in patients. In contrast, the gross motor defects and cerebellar hypomyelination that are common features of severely affected patients are absent in the mice, suggesting a relatively mild form of the disease in this conditional model. Our results show that disease pathogenesis in the mice involves defects that reduce both the number of mature myelinating oligodendrocytes and the ability of these cells to produce a myelin sheath of normal thickness. The findings suggest unique sensitivities of oligodendrogenesis and myelination to perturbations of Pol III transcription.


Assuntos
Doenças Desmielinizantes/fisiopatologia , Mutação , RNA Polimerase III/genética , Animais , Doenças Desmielinizantes/genética , Crescimento , Humanos , Masculino , Camundongos , Camundongos Mutantes
3.
Gene ; 768: 145259, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33148458

RESUMO

Mutations in RNA polymerase III (Pol III) cause hypomeylinating leukodystrophy (HLD) and neurodegeneration in humans. POLR3A and POLR3B, the two largest Pol III subunits, together form the catalytic center and carry the majority of disease alleles. Disease-causing mutations include invariant and highly conserved residues that are predicted to negatively affect Pol III activity and decrease transcriptional output. A subset of HLD missense mutations in POLR3A cluster in the pore region that provides nucleotide access to the Pol III active site. These mutations were engineered at the corresponding positions in the Saccharomyces cerevisiae homolog, Rpc160, to evaluate their functional deficits. None of the mutations caused a growth or transcription phenotype in yeast. Each mutation was combined with a frequently occurring pore mutation, POLR3A G672E, which was also wild-type for growth and transcription. The double mutants showed a spectrum of phenotypes from wild-type to lethal, with only the least fit combinations showing an effect on Pol III transcription. In one slow-growing temperature-sensitive mutant the steady-state level of tRNAs was unaffected, however global tRNA synthesis was compromised, as was the synthesis of RPR1 and SNR52 RNAs. Affinity-purified mutant Pol III was broadly defective in both factor-independent and factor-dependent transcription in vitro across genes that represent the yeast Pol III transcriptome. Thus, the robustness of yeast Rpc160 to single Pol III leukodystrophy mutations in the pore domain can be overcome by a second mutation in the domain.


Assuntos
Proteínas de Ligação a DNA/biossíntese , RNA Polimerase III/genética , RNA de Transferência/biossíntese , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética , Proteínas de Ligação a DNA/genética , RNA Polimerases Dirigidas por DNA/genética , Humanos , Doença de Pelizaeus-Merzbacher/genética , RNA Polimerase III/metabolismo , RNA de Transferência/genética , Transcrição Gênica/genética
4.
Sci Rep ; 10(1): 11956, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686713

RESUMO

Maf1-/- mice are lean, obesity-resistant and metabolically inefficient. Their increased energy expenditure is thought to be driven by a futile RNA cycle that reprograms metabolism to meet an increased demand for nucleotides stemming from the deregulation of RNA polymerase (pol) III transcription. Metabolic changes consistent with this model have been reported in both fasted and refed mice, however the impact of the fasting-refeeding-cycle on pol III function has not been examined. Here we show that changes in pol III occupancy in the liver of fasted versus refed wild-type mice are largely confined to low and intermediate occupancy genes; high occupancy genes are unchanged. However, in Maf1-/- mice, pol III occupancy of the vast majority of active loci in liver and the levels of specific precursor tRNAs in this tissue and other organs are higher than wild-type in both fasted and refed conditions. Thus, MAF1 functions as a chronic repressor of active pol III loci and can modulate transcription under different conditions. Our findings support the futile RNA cycle hypothesis, elaborate the mechanism of pol III repression by MAF1 and demonstrate a modest effect of MAF1 on global translation via reduced mRNA levels and translation efficiencies for several ribosomal proteins.


Assuntos
Regulação da Expressão Gênica , RNA Polimerase III/genética , Proteínas Repressoras/metabolismo , Animais , Sequenciamento de Cromatina por Imunoprecipitação , Biologia Computacional/métodos , Ontologia Genética , Estudo de Associação Genômica Ampla , Fígado/metabolismo , Camundongos , Ligação Proteica , Precursores de RNA , RNA de Transferência/genética , Proteínas Repressoras/genética , Transcriptoma
5.
Nat Struct Mol Biol ; 27(3): 229-232, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066962

RESUMO

Maf1 is a conserved inhibitor of RNA polymerase III (Pol III) that influences phenotypes ranging from metabolic efficiency to lifespan. Here, we present a 3.3-Å-resolution cryo-EM structure of yeast Maf1 bound to Pol III, establishing that Maf1 sequesters Pol III elements involved in transcription initiation and binds the mobile C34 winged helix 2 domain, sealing off the active site. The Maf1 binding site overlaps with that of TFIIIB in the preinitiation complex.


Assuntos
RNA Polimerase III/química , Proteínas Repressoras/química , Proteínas de Saccharomyces cerevisiae/química , Fator de Transcrição TFIIIB/química , Fatores de Transcrição/química , Transcrição Gênica , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fator de Transcrição TFIIIB/genética , Fator de Transcrição TFIIIB/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Mol Brain ; 12(1): 59, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221184

RESUMO

Recessive mutations in the ubiquitously expressed POLR3A and POLR3B genes are the most common cause of POLR3-related hypomyelinating leukodystrophy (POLR3-HLD), a rare childhood-onset disorder characterized by deficient cerebral myelin formation and cerebellar atrophy. POLR3A and POLR3B encode the two catalytic subunits of RNA Polymerase III (Pol III), which synthesizes numerous small non-coding RNAs. We recently reported that mice homozygous for the Polr3a mutation c.2015G > A (p.Gly672Glu) have no neurological abnormalities and thus do not recapitulate the human POLR3-HLD phenotype. To determine if other POLR3-HLD mutations can cause a leukodystrophy phenotype in mouse, we characterized mice carrying the Polr3b mutation c.308G > A (p.Arg103His). Surprisingly, homozygosity for this mutation was embryonically lethal with only wild-type and heterozygous animals detected at embryonic day 9.5. Using proteomics in a human cell line, we found that the POLR3B R103H mutation severely impairs assembly of the Pol III complex. We next generated Polr3aG672E/G672E/Polr3b+/R103Hdouble mutant mice but observed that this additional mutation was insufficient to elicit a neurological or transcriptional phenotype. Taken together with our previous study on Polr3a G672E mice, our results indicate that missense mutations in Polr3a and Polr3b can variably impair mouse development and Pol III function. Developing a proper model of POLR3-HLD is crucial to gain insights into the pathophysiological mechanisms involved in this devastating neurodegenerative disease.


Assuntos
Perda do Embrião/enzimologia , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Mutação/genética , RNA Polimerase III/genética , Animais , Sequência de Bases , Perda do Embrião/genética , Regulação Enzimológica da Expressão Gênica , Técnicas de Introdução de Genes , Células HEK293 , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/fisiopatologia , Homozigoto , Humanos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Atividade Motora , Bainha de Mielina/metabolismo , RNA Polimerase III/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Proc Natl Acad Sci U S A ; 115(48): 12182-12187, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30429315

RESUMO

As a master negative regulator of RNA polymerase (Pol) III, Maf1 modulates transcription in response to nutrients and stress to balance the production of highly abundant tRNAs, 5S rRNA, and other small noncoding RNAs with cell growth and maintenance. This regulation of Pol III transcription is important for energetic economy as mice lacking Maf1 are lean and resist weight gain on normal and high fat diets. The lean phenotype of Maf1 knockout (KO) mice is attributed in part to metabolic inefficiencies which increase the demand for cellular energy and elevate catabolic processes, including autophagy/lipophagy and lipolysis. A futile RNA cycle involving increased synthesis and turnover of Pol III transcripts has been proposed as an important driver of these changes. Here, using targeted metabolomics, we find changes in the liver of fed and fasted Maf1 KO mice consistent with the function of mammalian Maf1 as a chronic Pol III repressor. Differences in long-chain acylcarnitine levels suggest that energy demand is higher in the fed state of Maf1 KO mice versus the fasted state. Quantitative metabolite profiling supports increased activity in the TCA cycle, the pentose phosphate pathway, and the urea cycle and reveals changes in nucleotide levels and the creatine system. Metabolite profiling also confirms key predictions of the futile RNA cycle hypothesis by identifying changes in many metabolites involved in nucleotide synthesis and turnover. Thus, constitutively high levels of Pol III transcription in Maf1 KO mice reprogram central metabolic pathways and waste metabolic energy through a futile RNA cycle.


Assuntos
Peso Corporal , Metaboloma , RNA Polimerase III/metabolismo , Animais , Regulação da Expressão Gênica , Fígado/metabolismo , Redes e Vias Metabólicas , Camundongos , Camundongos Knockout , Fenótipo , RNA Polimerase III/genética , RNA Ribossômico 5S/genética , RNA Ribossômico 5S/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
8.
Annu Rev Biochem ; 87: 75-100, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29328783

RESUMO

RNA polymerase (Pol) III has a specialized role in transcribing the most abundant RNAs in eukaryotic cells, transfer RNAs (tRNAs), along with other ubiquitous small noncoding RNAs, many of which have functions related to the ribosome and protein synthesis. The high energetic cost of producing these RNAs and their central role in protein synthesis underlie the robust regulation of Pol III transcription in response to nutrients and stress by growth regulatory pathways. Downstream of Pol III, signaling impacts posttranscriptional processes affecting tRNA function in translation and tRNA cleavage into smaller fragments that are increasingly attributed with novel cellular activities. In this review, we consider how nutrients and stress control Pol III transcription via its factors and its negative regulator, Maf1. We highlight recent work showing that the composition of the tRNA population and the function of individual tRNAs is dynamically controlled and that unrestrained Pol III transcription can reprogram central metabolic pathways.


Assuntos
RNA Polimerase III/genética , RNA Polimerase III/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Animais , Humanos , Modelos Biológicos , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Fosforilação , Conformação Proteica , RNA Polimerase III/química , Processamento Pós-Transcricional do RNA , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Estresse Fisiológico , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fator de Transcrição TFIIIB/genética , Fator de Transcrição TFIIIB/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
9.
Metabolites ; 8(1)2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29346327

RESUMO

Identifying non-annotated peaks may have a significant impact on the understanding of biological systems. In silico methodologies have focused on ESI LC/MS/MS for identifying non-annotated MS peaks. In this study, we employed in silico methodology to develop an Isotopic Ratio Outlier Analysis (IROA) workflow using enhanced mass spectrometric data acquired with the ultra-high resolution GC-Orbitrap/MS to determine the identity of non-annotated metabolites. The higher resolution of the GC-Orbitrap/MS, together with its wide dynamic range, resulted in more IROA peak pairs detected, and increased reliability of chemical formulae generation (CFG). IROA uses two different 13C-enriched carbon sources (randomized 95% 12C and 95% 13C) to produce mirror image isotopologue pairs, whose mass difference reveals the carbon chain length (n), which aids in the identification of endogenous metabolites. Accurate m/z, n, and derivatization information are obtained from our GC/MS workflow for unknown metabolite identification, and aids in silico methodologies for identifying isomeric and non-annotated metabolites. We were able to mine more mass spectral information using the same Saccharomyces cerevisiae growth protocol (Qiu et al. Anal. Chem 2016) with the ultra-high resolution GC-Orbitrap/MS, using 10% ammonia in methane as the CI reagent gas. We identified 244 IROA peaks pairs, which significantly increased IROA detection capability compared with our previous report (126 IROA peak pairs using a GC-TOF/MS machine). For 55 selected metabolites identified from matched IROA CI and EI spectra, using the GC-Orbitrap/MS vs. GC-TOF/MS, the average mass deviation for GC-Orbitrap/MS was 1.48 ppm, however, the average mass deviation was 32.2 ppm for the GC-TOF/MS machine. In summary, the higher resolution and wider dynamic range of the GC-Orbitrap/MS enabled more accurate CFG, and the coupling of accurate mass GC/MS IROA methodology with in silico fragmentation has great potential in unknown metabolite identification, with applications for characterizing model organism networks.

10.
Mol Brain ; 10(1): 13, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28407788

RESUMO

Recessive mutations in the ubiquitously expressed POLR3A gene cause one of the most frequent forms of childhood-onset hypomyelinating leukodystrophy (HLD): POLR3-HLD. POLR3A encodes the largest subunit of RNA Polymerase III (Pol III), which is responsible for the transcription of transfer RNAs (tRNAs) and a large array of other small non-coding RNAs. In order to study the central nervous system pathophysiology of the disease, we introduced the French Canadian founder Polr3a mutation c.2015G > A (p.G672E) in mice, generating homozygous knock-in (KI/KI) as well as compound heterozygous mice for one Polr3a KI and one null allele (KI/KO). Both KI/KI and KI/KO mice are viable and are able to reproduce. To establish if they manifest a motor phenotype, WT, KI/KI and KI/KO mice were submitted to a battery of behavioral tests over one year. The KI/KI and KI/KO mice have overall normal balance, muscle strength and general locomotion. Cerebral and cerebellar Luxol Fast Blue staining and measurement of levels of myelin proteins showed no significant differences between the three groups, suggesting that myelination is not overtly impaired in Polr3a KI/KI and KI/KO mice. Finally, expression levels of several Pol III transcripts in the brain showed no statistically significant differences. We conclude that the first transgenic mice with a leukodystrophy-causing Polr3a mutation do not recapitulate the childhood-onset HLD observed in the majority of human patients with POLR3A mutations, and provide essential information to guide selection of Polr3a mutations for developing future mouse models of the disease.


Assuntos
Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Mutação/genética , Bainha de Mielina/metabolismo , RNA Polimerase III/genética , Animais , Cerebelo/patologia , Cerebelo/fisiopatologia , Técnicas de Introdução de Genes , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/fisiopatologia , Homozigoto , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Células de Purkinje/metabolismo , Células de Purkinje/patologia , RNA Polimerase III/metabolismo , Transcrição Gênica
11.
PLoS One ; 11(9): e0163312, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27685651

RESUMO

Peptides function as signaling molecules in species as diverse as humans and yeast. Mass spectrometry-based peptidomics techniques provide a relatively unbiased method to assess the peptidome of biological samples. In the present study, we used a quantitative peptidomic technique to characterize the peptidome of the yeast Saccharomyces cerevisiae and compare it to the peptidomes of mammalian cell lines and tissues. Altogether, 297 yeast peptides derived from 75 proteins were identified. The yeast peptides are similar to those of the human peptidome in average size and amino acid composition. Inhibition of proteasome activity with either bortezomib or epoxomicin led to decreased levels of some yeast peptides, suggesting that these peptides are generated by the proteasome. Approximately 30% of the yeast peptides correspond to the N- or C-terminus of the protein; the human peptidome is also highly represented in N- or C-terminal protein fragments. Most yeast and humans peptides are derived from a subset of abundant proteins, many with functions involving cellular metabolism or protein synthesis and folding. Of the 75 yeast proteins that give rise to peptides, 24 have orthologs that give rise to human and/or mouse peptides and for some, the same region of the proteins are found in the human, mouse, and yeast peptidomes. Taken together, these results support the hypothesis that intracellular peptides may have specific and conserved biological functions.

12.
PLoS One ; 10(5): e0127225, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25970584

RESUMO

The production of ribosomes and tRNAs for protein synthesis has a high energetic cost and is under tight transcriptional control to ensure that the level of RNA synthesis is balanced with nutrient availability and the prevailing environmental conditions. In the RNA polymerase (pol) III system in yeast, nutrients and stress affect transcription through a bifurcated signaling pathway in which protein kinase A (PKA) and TORC1 activity directly or indirectly, through downstream kinases, alter the phosphorylation state and function of the Maf1 repressor and Rpc53, a TFIIF-like subunit of the polymerase. However, numerous lines of evidence suggest greater complexity in the regulatory network including the phosphoregulation of other pol III components. To address this issue, we systematically examined all 17 subunits of pol III along with the three subunits of the initiation factor TFIIIB for evidence of differential phosphorylation in response to inhibition of TORC1. A relatively high stoichiometry of phosphorylation was observed for several of these proteins and the Rpc82 subunit of the polymerase and the Bdp1 subunit of TFIIIB were found to be differentially phosphorylated. Bdp1 is phosphorylated on four major sites during exponential growth and the protein is variably dephosphorylated under conditions that inhibit tRNA gene transcription. PKA, the TORC1-regulated kinase Sch9 and protein kinase CK2 are all implicated in the phosphorylation of Bdp1. Alanine substitutions at the four phosphosites cause hyper-repression of transcription indicating that phosphorylation of Bdp1 opposes Maf1-mediated repression. The new findings suggest an integrated regulatory model for signaling events controlling pol III transcription.


Assuntos
RNA Polimerase III/metabolismo , Saccharomyces cerevisiae/enzimologia , Fator de Transcrição TFIIIB/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico , Regulação Fúngica da Expressão Gênica , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Transcrição Gênica
13.
Genes Dev ; 29(9): 934-47, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25934505

RESUMO

MAF1 is a global repressor of RNA polymerase III transcription that regulates the expression of highly abundant noncoding RNAs in response to nutrient availability and cellular stress. Thus, MAF1 function is thought to be important for metabolic economy. Here we show that a whole-body knockout of Maf1 in mice confers resistance to diet-induced obesity and nonalcoholic fatty liver disease by reducing food intake and increasing metabolic inefficiency. Energy expenditure in Maf1(-/-) mice is increased by several mechanisms. Precursor tRNA synthesis was increased in multiple tissues without significant effects on mature tRNA levels, implying increased turnover in a futile tRNA cycle. Elevated futile cycling of hepatic lipids was also observed. Metabolite profiling of the liver and skeletal muscle revealed elevated levels of many amino acids and spermidine, which links the induction of autophagy in Maf1(-/-) mice with their extended life span. The increase in spermidine was accompanied by reduced levels of nicotinamide N-methyltransferase, which promotes polyamine synthesis, enables nicotinamide salvage to regenerate NAD(+), and is associated with obesity resistance. Consistent with this, NAD(+) levels were increased in muscle. The importance of MAF1 for metabolic economy reveals the potential for MAF1 modulators to protect against obesity and its harmful consequences.


Assuntos
Proteínas Repressoras/genética , Animais , Autofagia/genética , Ingestão de Alimentos/genética , Metabolismo Energético/genética , Metabolismo dos Lipídeos/genética , Longevidade/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/genética , RNA de Transferência/metabolismo , Espermidina/metabolismo
15.
ACS Chem Biol ; 10(3): 775-83, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25602169

RESUMO

Equilibrative transporters are potential drug targets; however, most functional assays involve radioactive substrate uptake that is unsuitable for high-throughput screens (HTS). We developed a robust yeast-based growth assay that is potentially applicable to many equilibrative transporters. As proof of principle, we applied our approach to Equilibrative Nucleoside Transporter 1 of the malarial parasite Plasmodium falciparum (PfENT1). PfENT1 inhibitors might serve as novel antimalarial drugs since PfENT1-mediated purine import is essential for parasite proliferation. To identify PfENT1 inhibitors, we screened 64 560 compounds and identified 171 by their ability to rescue the growth of PfENT1-expressing fui1Δ yeast in the presence of a cytotoxic PfENT1 substrate, 5-fluorouridine (5-FUrd). In secondary assays, nine of the highest activity compounds inhibited PfENT1-dependent growth of a purine auxotrophic yeast strain with adenosine as the sole purine source (IC50 0.2-2 µM). These nine compounds completely blocked [(3)H]adenosine uptake into PfENT1-expressing yeast and erythrocyte-free trophozoite-stage parasites (IC50 5-50 nM), and inhibited chloroquine-sensitive and -resistant parasite proliferation (IC50 5-50 µM). Wild-type (WT) parasite IC50 values were up to 4-fold lower compared to PfENT1-knockout (pfent1Δ) parasites. pfent1Δ parasite killing showed a delayed-death phenotype not observed with WT. We infer that, in parasites, the compounds inhibit both PfENT1 and a secondary target with similar efficacy. The secondary target identity is unknown, but its existence may reduce the likelihood of parasites developing resistance to PfENT1 inhibitors. Our data support the hypothesis that blocking purine transport through PfENT1 may be a novel and compelling approach for antimalarial drug development.


Assuntos
Antimaláricos/farmacologia , Ensaios de Triagem em Larga Escala , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Trofozoítos/efeitos dos fármacos , Adenosina/metabolismo , Antimaláricos/química , Cultura Axênica , Transporte Biológico/efeitos dos fármacos , Deleção de Genes , Expressão Gênica , Teste de Complementação Genética , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/genética , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/metabolismo , Proteínas de Transporte de Nucleosídeos/genética , Proteínas de Transporte de Nucleosídeos/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Trofozoítos/crescimento & desenvolvimento , Trofozoítos/metabolismo , Uridina/análogos & derivados , Uridina/farmacologia
16.
J Biol Chem ; 290(11): 7221-33, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25631054

RESUMO

Transcriptional regulation of ribosome and tRNA synthesis plays a central role in determining protein synthetic capacity and is tightly controlled in response to nutrient availability and cellular stress. In Saccharomyces cerevisiae, the regulation of ribosome and tRNA synthesis was recently shown to involve the Cdc-like kinase Kns1 and the GSK-3 kinase Mck1. In this study, we explored additional roles for these conserved kinases in processes connected to the target of rapamycin complex 1 (TORC1). We conducted a synthetic chemical-genetic screen in a kns1Δ mck1Δ strain and identified many novel rapamycin-hypersensitive genes. Gene ontology analysis showed enrichment for TORC1-regulated processes (vesicle-mediated transport, autophagy, and regulation of cell size) and identified new connections to protein complexes including the protein kinase CK2. CK2 is considered to be a constitutively active kinase and in budding yeast, the holoenzyme comprises two regulatory subunits, Ckb1 and Ckb2, and two catalytic subunits, Cka1 and Cka2. We show that Ckb1 is differentially phosphorylated in vivo and that Kns1 mediates this phosphorylation when nutrients are limiting and under all tested stress conditions. We determined that the phosphorylation of Ckb1 does not detectably affect the stability of the CK2 holoenzyme but correlates with the reduced occupancy of Ckb1 on tRNA genes after rapamycin treatment. Thus, the differential occupancy of tRNA genes by CK2 is likely to modulate its activation of RNA polymerase III transcription. Our data suggest that TORC1, via its effector kinase Kns1, may regulate the association of CK2 with some of its substrates by phosphorylating Ckb1.


Assuntos
Caseína Quinase II/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Antifúngicos/farmacologia , Caseína Quinase II/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Polimerase III/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Sirolimo/farmacologia , Estresse Fisiológico , Ativação Transcricional
17.
Biochim Biophys Acta ; 1829(3-4): 361-75, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23165150

RESUMO

Transcription by RNA polymerase III (pol III) is responsible for ~15% of total cellular transcription through the generation of small structured RNAs such as tRNA and 5S RNA. The coordinate synthesis of these molecules with ribosomal protein mRNAs and rRNA couples the production of ribosomes and their tRNA substrates and balances protein synthetic capacity with the growth requirements of the cell. Ribosome biogenesis in general and pol III transcription in particular is known to be regulated by nutrient availability, cell stress and cell cycle stage and is perturbed in pathological states. High throughput proteomic studies have catalogued modifications to pol III subunits, assembly, initiation and accessory factors but most of these modifications have yet to be linked to functional consequences. Here we review our current understanding of the major points of regulation in the pol III transcription apparatus, the targets of regulation and the signaling pathways known to regulate their function. This article is part of a Special Issue entitled: Transcription by Odd Pols.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Regulação da Expressão Gênica , Transdução de Sinais , Estresse Fisiológico , Transcrição Gênica , Animais , Alimentos , Humanos , Proteínas Repressoras/metabolismo , Fatores de Transcrição TFIII/metabolismo , Leveduras/genética , Leveduras/metabolismo
18.
PLoS Genet ; 8(8): e1002890, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22927826

RESUMO

The ability to store nutrients in lipid droplets (LDs) is an ancient function that provides the primary source of metabolic energy during periods of nutrient insufficiency and between meals. The Fat storage-Inducing Transmembrane (FIT) proteins are conserved ER-resident proteins that facilitate fat storage by partitioning energy-rich triglycerides into LDs. FIT2, the ancient ortholog of the FIT gene family first identified in mammals has two homologs in Saccharomyces cerevisiae (SCS3 and YFT2) and other fungi of the Saccharomycotina lineage. Despite the coevolution of these genes for more than 170 million years and their divergence from higher eukaryotes, SCS3, YFT2, and the human FIT2 gene retain some common functions: expression of the yeast genes in a human embryonic kidney cell line promotes LD formation, and expression of human FIT2 in yeast rescues the inositol auxotrophy and chemical and genetic phenotypes of strains lacking SCS3. To better understand the function of SCS3 and YFT2, we investigated the chemical sensitivities of strains deleted for either or both genes and identified synthetic genetic interactions against the viable yeast gene-deletion collection. We show that SCS3 and YFT2 have shared and unique functions that connect major biosynthetic processes critical for cell growth. These include lipid metabolism, vesicular trafficking, transcription of phospholipid biosynthetic genes, and protein synthesis. The genetic data indicate that optimal strain fitness requires a balance between phospholipid synthesis and protein synthesis and that deletion of SCS3 and YFT2 impacts a regulatory mechanism that coordinates these processes. Part of this mechanism involves a role for SCS3 in communicating changes in the ER (e.g. due to low inositol) to Opi1-regulated transcription of phospholipid biosynthetic genes. We conclude that SCS3 and YFT2 are required for normal ER membrane biosynthesis in response to perturbations in lipid metabolism and ER stress.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Animais , Estresse do Retículo Endoplasmático , Deleção de Genes , Redes Reguladoras de Genes , Humanos , Inositol/metabolismo , Metabolismo dos Lipídeos , Fosfolipídeos/metabolismo , Saccharomyces cerevisiae/genética , Resposta a Proteínas não Dobradas
19.
J Biol Chem ; 287(36): 30833-41, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22810236

RESUMO

Maf1 is a conserved regulator of RNA polymerase (pol) III transcription and is required for transcriptional repression under diverse stress conditions. In yeast, Maf1 function is negatively regulated at seven phosphosites by the overlapping action of protein kinase A (PKA) and the TORC1-regulated kinase Sch9. Under stress conditions, Maf1 is dephosphorylated at these sites leading to its nuclear accumulation, increased association with pol III genes and direct physical interactions with the polymerase which ultimately inhibit transcription. These changes are reversed upon return to optimal growth conditions. Transcription in this system is also regulated by protein kinase CK2. CK2 stimulates pol III transcription in yeast and human cells via phosphorylation of the initiation factor TFIIIB. Recently it was proposed that CK2 phosphorylation of Maf1 is required for reactivation of pol III transcription following growth on glycerol. We have examined this hypothesis using two Maf1 mutants (Maf1-id S388A and Maf1-ck2(0)) which lack all of the CK2 phosphosites implicated in the response. Both mutant proteins are phosphoregulated, function normally during repression and transcription is fully restored to the wild-type level upon transfer from glycerol to glucose. Additionally, phos-tag gel analysis of Maf1 7SA, a functional mutant that cannot be phosphorylated by PKA/Sch9, did not reveal any evidence for differential phosphorylation of Maf1 during carbon source switching. Together, these data do not support the proposed requirement for CK2 phosphorylation of Maf1 during derepression of pol III transcription.


Assuntos
Crioprotetores/farmacologia , Glicerol/farmacologia , RNA Polimerase III/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/enzimologia , Transcrição Gênica/efeitos dos fármacos , Substituição de Aminoácidos , Caseína Quinase II , Humanos , Mutação de Sentido Incorreto , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Polimerase III/genética , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIIB/genética , Fator de Transcrição TFIIIB/metabolismo , Transcrição Gênica/fisiologia
20.
Mol Cell ; 45(6): 836-43, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22364741

RESUMO

Target of rapamycin (TOR)-dependent signaling and the control of cell growth is deregulated in many cancers. However, the signaling molecules downstream of TOR that coordinately regulate the synthesis of ribosomes and tRNAs are not well defined. Here, we show in yeast that conserved kinases of the LAMMER/Cdc-like and GSK-3 families function downstream of TOR complex 1 to repress ribosome and tRNA synthesis in response to nutrient limitation and other types of cellular stress. As a part of this response, we found that the LAMMER kinase Kns1 is differentially expressed and hyperphosphorylated and accumulates in the nucleus after rapamycin treatment, whereupon it primes the phosphorylation of the RNA polymerase III subunit Rpc53 by a specific GSK-3 family member, Mck1. In cooperation with another polymerase subunit, Rpc11, this phosphorylation of Rpc53 modifies the function of the enzyme and together with dephosphorylation of the Maf1 repressor inhibits the growth-promoting activity of RNA polymerase III transcription.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RNA de Transferência/biossíntese , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Ribossomos/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Sirolimo/farmacologia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...