Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Res ; 134(11): e133-e149, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38639105

RESUMO

BACKGROUND: The precise origin of newly formed ACTA2+ (alpha smooth muscle actin-positive) cells appearing in nonmuscularized vessels in the context of pulmonary hypertension is still debatable although it is believed that they predominantly derive from preexisting vascular smooth muscle cells (VSMCs). METHODS: Gli1Cre-ERT2; tdTomatoflox mice were used to lineage trace GLI1+ (glioma-associated oncogene homolog 1-positive) cells in the context of pulmonary hypertension using 2 independent models of vascular remodeling and reverse remodeling: hypoxia and cigarette smoke exposure. Hemodynamic measurements, right ventricular hypertrophy assessment, flow cytometry, and histological analysis of thick lung sections followed by state-of-the-art 3-dimensional reconstruction and quantification using Imaris software were used to investigate the contribution of GLI1+ cells to neomuscularization of the pulmonary vasculature. RESULTS: The data show that GLI1+ cells are abundant around distal, nonmuscularized vessels during steady state, and this lineage contributes to around 50% of newly formed ACTA2+ cells around these normally nonmuscularized vessels. During reverse remodeling, cells derived from the GLI1+ lineage are largely cleared in parallel to the reversal of muscularization. Partial ablation of GLI1+ cells greatly prevented vascular remodeling in response to hypoxia and attenuated the increase in right ventricular systolic pressure and right heart hypertrophy. Single-cell RNA sequencing on sorted lineage-labeled GLI1+ cells revealed an Acta2high fraction of cells with pathways in cancer and MAPK (mitogen-activated protein kinase) signaling as potential players in reprogramming these cells during vascular remodeling. Analysis of human lung-derived material suggests that GLI1 signaling is overactivated in both group 1 and group 3 pulmonary hypertension and can promote proliferation and myogenic differentiation. CONCLUSIONS: Our data highlight GLI1+ cells as an alternative cellular source of VSMCs in pulmonary hypertension and suggest that these cells and the associated signaling pathways represent an important therapeutic target for further studies.


Assuntos
Hipertensão Pulmonar , Remodelação Vascular , Proteína GLI1 em Dedos de Zinco , Animais , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Camundongos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Camundongos Endogâmicos C57BL , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Camundongos Transgênicos , Masculino , Humanos , Hipóxia/metabolismo , Hipóxia/fisiopatologia
2.
Cell Mol Life Sci ; 79(11): 581, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36333491

RESUMO

Repair-supportive mesenchymal cells (RSMCs) have been recently reported in the context of naphthalene (NA)-induced airway injury and regeneration. These cells transiently express smooth muscle actin (Acta2) and are enriched with platelet-derived growth factor receptor alpha (Pdgfra) and fibroblast growth factor 10 (Fgf10) expression. Genetic deletion of Ctnnb1 (gene coding for beta catenin) or Fgf10 in these cells using the Acta2-Cre-ERT2 driver line after injury (defined as NA-Tam condition; Tam refers to tamoxifen) led to impaired repair of the airway epithelium. In this study, we demonstrate that RSMCs are mostly captured using the Acta2-Cre-ERT2 driver when labeling occurs after (NA-Tam condition) rather than before injury (Tam-NA condition), and that their expansion occurs mostly between days 3 and 7 following NA treatment. Previous studies have shown that lineage-traced peribronchial GLI1+ cells are transiently amplified after NA injury. Here, we report that Gli1 expression is enriched in RSMCs. Using lineage tracing with Gli1Cre-ERT2 mice combined with genetic inactivation of Fgf10, we show that GLI1+ cells with Fgf10 deletion fail to amplify around the injured airways, thus resulting in impaired airway epithelial repair. Interestingly, Fgf10 expression is not upregulated in GLI1+ cells following NA treatment, suggesting that epithelial repair is mostly due to the increased number of Fgf10-expressing GLI1+ cells. Co-culture of SCGB1A1+ cells with GLI1+ cells isolated from non-injured or injured lungs showed that GLI1+ cells from these two conditions are similarly capable of supporting bronchiolar organoid (or bronchiolosphere) formation. Single-cell RNA sequencing on sorted lineage-labeled cells showed that the RSMC signature resembles that of alveolar fibroblasts. Altogether, our study provides strong evidence for the involvement of mesenchymal progenitors in airway epithelial regeneration and highlights the critical role played by Fgf10-expressing GLI1+ cells in this context.


Assuntos
Células-Tronco Mesenquimais , Camundongos , Animais , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Pulmão/metabolismo , Células-Tronco , Epitélio/fisiologia , Células Epiteliais/metabolismo
3.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35887096

RESUMO

Airway mucociliary regeneration and function are key players for airway defense and are impaired in chronic obstructive pulmonary disease (COPD). Using transcriptome analysis in COPD-derived bronchial biopsies, we observed a positive correlation between cilia-related genes and microRNA-449 (miR449). In vitro, miR449 was strongly increased during airway epithelial mucociliary differentiation. In vivo, miR449 was upregulated during recovery from chemical or infective insults. miR0449-/- mice (both alleles are deleted) showed impaired ciliated epithelial regeneration after naphthalene and Haemophilus influenzae exposure, accompanied by more intense inflammation and emphysematous manifestations of COPD. The latter occurred spontaneously in aged miR449-/- mice. We identified Aurora kinase A and its effector target HDAC6 as key mediators in miR449-regulated ciliary homeostasis and epithelial regeneration. Aurora kinase A is downregulated upon miR449 overexpression in vitro and upregulated in miR449-/- mouse lungs. Accordingly, imaging studies showed profoundly altered cilia length and morphology accompanied by reduced mucociliary clearance. Pharmacological inhibition of HDAC6 rescued cilia length and coverage in miR449-/- cells, consistent with its tubulin-deacetylating function. Altogether, our study establishes a link between miR449, ciliary dysfunction, and COPD pathogenesis.


Assuntos
Aurora Quinase A/metabolismo , Desacetilase 6 de Histona/metabolismo , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Animais , Aurora Quinase A/genética , Cílios/genética , Células Epiteliais , Camundongos , MicroRNAs/genética , Doença Pulmonar Obstrutiva Crônica/genética , Tubulina (Proteína)/genética
4.
Cell Rep ; 33(12): 108549, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33357434

RESUMO

Tissue regeneration requires coordinated and dynamic remodeling of stem and progenitor cells and the surrounding niche. Although the plasticity of epithelial cells has been well explored in many tissues, the dynamic changes occurring in niche cells remain elusive. Here, we show that, during lung repair after naphthalene injury, a population of PDGFRα+ cells emerges in the non-cartilaginous conducting airway niche, which is normally populated by airway smooth muscle cells (ASMCs). This cell population, which we term "repair-supportive mesenchymal cells" (RSMCs), is distinct from conventional ASMCs, which have previously been shown to contribute to epithelial repair. Gene expression analysis on sorted lineage-labeled cells shows that RSMCs express low levels of ASMC markers, but high levels of the pro-regenerative marker Fgf10. Organoid co-cultures demonstrate an enhanced ability for RSMCs in supporting club-cell growth. Our study highlights the dynamics of mesenchymal cells in the airway niche and has implications for chronic airway-injury-associated diseases.


Assuntos
Células Epiteliais/metabolismo , Regeneração Tecidual Guiada/métodos , Células-Tronco Mesenquimais/metabolismo , Animais , Células Epiteliais/patologia , Feminino , Humanos , Camundongos
5.
Cells ; 9(4)2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252341

RESUMO

BACKGROUND: Bronchopulmonary dysplasia (BPD) is a lung disease of preterm born infants, characterized by alveolar simplification. MicroRNA (miR) are known to be involved in many biological and pathological processes in the lung. Although a changed expression has been described for several miR in BPD, a causal role remains to be established. RESULTS: Our results showed that the expression level of miR-154 increases during lung development and decreases postnatally. Further, hyperoxia treatment maintains high levels of miR-154 in alveolar type 2 cells (AT2). We hypothesized that the decrease in miR-154 expression in AT2 cells is required for normal alveologenesis. To test this hypothesis, we generated a novel transgenic mouse allowing doxycycline-based miR-154 overexpression. Maintenance of miR-154 expression in the postnatal distal lung epithelium under normoxia conditions is sufficient to reproduce the hypoalveologenesis phenotype triggered by hyperoxia. Using a pull-down assay, we identified Caveolin1 as a key downstream target of miR-154. Caveolin1 protein is downregulated in response to overexpression of miR-154. This is associated with increased phosphorylation of Smad3 and Tgf-ß signaling. We found that AT2 cells overexpressing miR-154 display decreased expression of AT2 markers and increased expression of AT1 markers. CONCLUSION: Our results suggest that down-regulation of miR-154 in postnatal lung may function as an important physiological switch that permits the induction of the correct alveolar developmental program, while conversely, failure to down-regulate miR-154 suppresses alveolarization, leading to the common clinically observed phenotype of alveolar simplification.


Assuntos
Displasia Broncopulmonar/metabolismo , MicroRNAs/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patologia , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/biossíntese , MicroRNAs/genética , Transdução de Sinais
6.
Nat Commun ; 10(1): 2987, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31278260

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal disease in which the intricate alveolar network of the lung is progressively replaced by fibrotic scars. Myofibroblasts are the effector cells that excessively deposit extracellular matrix proteins thus compromising lung structure and function. Emerging literature suggests a correlation between fibrosis and metabolic alterations in IPF. In this study, we show that the first-line antidiabetic drug metformin exerts potent antifibrotic effects in the lung by modulating metabolic pathways, inhibiting TGFß1 action, suppressing collagen formation, activating PPARγ signaling and inducing lipogenic differentiation in lung fibroblasts derived from IPF patients. Using genetic lineage tracing in a murine model of lung fibrosis, we show that metformin alters the fate of myofibroblasts and accelerates fibrosis resolution by inducing myofibroblast-to-lipofibroblast transdifferentiation. Detailed pathway analysis revealed a two-arm mechanism by which metformin accelerates fibrosis resolution. Our data report an antifibrotic role for metformin in the lung, thus warranting further therapeutic evaluation.


Assuntos
Fibrose Pulmonar Idiopática/tratamento farmacológico , Lipogênese/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Metformina/farmacologia , Miofibroblastos/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Colágeno/biossíntese , Modelos Animais de Doenças , Humanos , Fibrose Pulmonar Idiopática/etiologia , Fibrose Pulmonar Idiopática/patologia , Pulmão/citologia , Pulmão/patologia , Masculino , Metformina/uso terapêutico , Camundongos , Miofibroblastos/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Cultura Primária de Células , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Resultado do Tratamento , Regulação para Cima/efeitos dos fármacos
7.
Hum Mol Genet ; 28(9): 1429-1444, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30566624

RESUMO

Bronchopulmonary dysplasia (BPD), characterized by alveoli simplification and dysmorphic pulmonary microvasculature, is a chronic lung disease affecting prematurely born infants. Pulmonary hypertension (PH) is an important BPD feature associated with morbidity and mortality. In human BPD, inflammation leads to decreased fibroblast growth factor 10 (FGF10) expression but the impact on the vasculature is so far unknown. We used lungs from Fgf10+/- versus Fgf10+/+ pups to investigate the effect of Fgf10 deficiency on vascular development in normoxia (NOX) and hyperoxia (HOX, BPD mouse model). To assess the role of fibroblast growth factor receptor 2b (Fgfr2b) ligands independently of early developmentaldefects, we used an inducible double transgenic system in mice allowing inhibition of Fgfr2b ligands activity. Using vascular morphometry, we quantified the pathological changes. Finally, we evaluated changes in FGF10, surfactant protein C (SFTPC), platelet endothelial cell adhesion molecule (PECAM) and alpha-smooth muscle actin 2 (α-SMA) expression in human lung samples from patients suffering from BPD. In NOX, no major difference in the lung vasculature between Fgf10+/- and control pups was detected. In HOX, a greater loss of blood vessels in Fgf10+/- lungs is associated with an increase of poorly muscularized vessels. Fgfr2b ligands inhibition postnatally in HOX is sufficient to decrease the number of blood vessels while increasing the level of muscularization, suggesting a PH phenotype. BPD lungs exhibited decreased FGF10, SFTPC and PECAM but increased α-SMA. Fgf10 deficiency-associated vascular defects are enhanced in HOX and could represent an additional cause of morbidity in human patients with BPD.


Assuntos
Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/patologia , Suscetibilidade a Doenças , Fator 10 de Crescimento de Fibroblastos/deficiência , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Animais , Biomarcadores , Displasia Broncopulmonar/metabolismo , Biologia Computacional/métodos , Modelos Animais de Doenças , Expressão Gênica , Perfilação da Expressão Gênica , Genótipo , Hipóxia , Pulmão/patologia , Camundongos , Mutação , Neovascularização Fisiológica/genética , Consumo de Oxigênio , Fosforilação , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais
8.
J Pathol ; 245(2): 153-159, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29574785

RESUMO

Trophic functions for macrophages are emerging as key mediators of developmental processes, including bone, vessel, and mammary gland development. Yolk sac-derived macrophages mature in the distal lung shortly after birth. Myeloid-lineage macrophages are recruited to the lung and are activated under pathological conditions. These pathological conditions include bronchopulmonary dysplasia (BPD), a common complication of preterm birth characterized by stunted lung development, where the formation of alveoli is blocked. No study has addressed causal roles for immune cells in lung alveolarization. We employed antibody-based and transgenic death receptor-based depletion approaches to deplete or prevent lung recruitment of immune cell populations in a hyperoxia-based mouse model of BPD. Neither neutrophils nor exudate macrophages (which might include lung interstitial macrophages) contributed to structural perturbations to the lung that were provoked by hyperoxia; however, cells of the Csf1r-expressing monocyte/macrophage lineage were implicated as causal mediators of stunted lung development. We propose that resident alveolar macrophages differentiate into a population of CD45+ CD11c+ SiglecF+ CD11b+ CD68+ MHCII+ cells, which are activated by hyperoxia, and contribute to disturbances to the structural development of the immature lung. This is the first report that causally implicates immune cells in pathological disturbances to postnatal lung organogenesis. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Displasia Broncopulmonar/patologia , Ativação de Macrófagos , Macrófagos Alveolares/patologia , Alvéolos Pulmonares/patologia , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/imunologia , Displasia Broncopulmonar/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Hiperóxia/complicações , Hiperóxia/metabolismo , Hiperóxia/patologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Camundongos Endogâmicos C57BL , Organogênese , Fenótipo , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/metabolismo , Transdução de Sinais
10.
Stem Cells ; 35(6): 1566-1578, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28370670

RESUMO

ACTA2 expression identifies pulmonary airway and vascular smooth muscle cells (SMCs) as well as alveolar myofibroblasts (MYF). Mesenchymal progenitors expressing fibroblast growth factor 10 (Fgf10), Wilms tumor 1 (Wt1), or glioma-associated oncogene 1 (Gli1) contribute to SMC formation from early stages of lung development. However, their respective contribution and specificity to the SMC and/or alveolar MYF lineages remain controversial. In addition, the contribution of mesenchymal cells undergoing active WNT signaling remains unknown. Using Fgf10CreERT2 , Wt1CreERT2 , Gli1CreERT2 , and Axin2CreERT2 inducible driver lines in combination with a tdTomatoflox reporter line, the respective differentiation of each pool of labeled progenitor cells along the SMC and alveolar MYF lineages was quantified. The results revealed that while FGF10+ and WT1+ cells show a minor contribution to the SMC lineage, GLI1+ and AXIN2+ cells significantly contribute to both the SMC and alveolar MYF lineages, but with limited specificity. Lineage tracing using the Acta2-CreERT2 transgenic line showed that ACTA2+ cells labeled at embryonic day (E)11.5 do not expand significantly to give rise to new SMCs at E18.5. However, ACTA2+ cells labeled at E15.5 give rise to the majority (85%-97%) of the SMCs in the lung at E18.5 as well as alveolar MYF progenitors in the lung parenchyma. Fluorescence-activated cell sorting-based isolation of different subpopulations of ACTA2+ lineage-traced cells followed by gene arrays, identified transcriptomic signatures for alveolar MYF progenitors versus airway and vascular SMCs at E18.5. Our results establish a new transcriptional landscape for further experiments addressing the function of signaling pathways in the formation of different subpopulations of ACTA2+ cells. Stem Cells 2017;35:1566-1578.


Assuntos
Actinas/metabolismo , Pulmão/citologia , Miócitos de Músculo Liso/metabolismo , Animais , Animais Recém-Nascidos , Diferenciação Celular , Linhagem da Célula , Separação Celular , Fator 10 de Crescimento de Fibroblastos/metabolismo , Pulmão/embriologia , Camundongos , Modelos Biológicos , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Alvéolos Pulmonares/citologia , Transdução de Sinais/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
12.
Dev Dyn ; 246(7): 531-538, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28387977

RESUMO

BACKGROUND: Airway smooth muscle cells (ASMCs) have been widely studied during embryonic lung development. These cells have been shown to control epithelial bifurcation during branching morphogenesis. Fibroblast growth factor 10-positive (FGF10+ ) cells, originally residing in the submesothelial mesenchyme, contribute to ASMC formation in the distal lung. The reported work aims at monitoring the response of FGF10+ progenitors and differentiated ASMCs to growth factor treatment in real time using lineage tracing in the background of an air-liquid interface (ALI) culture system. RESULTS: FGF ligands impose divergent effects on iterative lung branching in vitro. Moreover, time-lapse imaging and endpoint analysis show that FGF9 treatment leads to amplification of the FGF10+ lineage and represses its differentiation to ASMCs. Sonic hedgehog (SHH) treatment reduces the amplification of this lineage and leads to decreased lung branching. Finally, differentiated ASMCs in proximal regions fail to expand upon FGF9 treatment. CONCLUSIONS: Our data demonstrate, in real time, that FGF9 is an important regulator of amplification, migration, and subsequent differentiation of ASMC progenitors during early lung development. The attained results agree with previous findings regarding ASMC formation and highlight the complexity of growth factor signaling networks in controlling mesenchymal cell-fate decisions in the developing mouse lung. Developmental Dynamics 246:531-538, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Fator 10 de Crescimento de Fibroblastos/análise , Pulmão/citologia , Pulmão/crescimento & desenvolvimento , Miócitos de Músculo Liso/citologia , Animais , Diferenciação Celular , Linhagem da Célula , Fator 9 de Crescimento de Fibroblastos/farmacologia , Proteínas Hedgehog/farmacologia , Pulmão/embriologia , Camundongos , Organogênese/efeitos dos fármacos , Organogênese/fisiologia , Células-Tronco/citologia , Imagem com Lapso de Tempo
13.
Cell Stem Cell ; 20(2): 261-273.e3, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-27867035

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a form of progressive interstitial lung disease with unknown etiology. Due to a lack of effective treatment, IPF is associated with a high mortality rate. The hallmark feature of this disease is the accumulation of activated myofibroblasts that excessively deposit extracellular matrix proteins, thus compromising lung architecture and function and hindering gas exchange. Here we investigated the origin of activated myofibroblasts and the molecular mechanisms governing fibrosis formation and resolution. Genetic engineering in mice enables the time-controlled labeling and monitoring of lipogenic or myogenic populations of lung fibroblasts during fibrosis formation and resolution. Our data demonstrate a lipogenic-to-myogenic switch in fibroblastic phenotype during fibrosis formation. Conversely, we observed a myogenic-to-lipogenic switch during fibrosis resolution. Analysis of human lung tissues and primary human lung fibroblasts indicates that this fate switching is involved in IPF pathogenesis, opening potential therapeutic avenues to treat patients.


Assuntos
Progressão da Doença , Fibroblastos/patologia , Fibrose Pulmonar Idiopática/patologia , Lipogênese , Desenvolvimento Muscular , Actinas/metabolismo , Animais , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fibroblastos/metabolismo , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , PPAR gama/metabolismo , Fenótipo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo
14.
J Pathol ; 241(1): 91-103, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27770432

RESUMO

Inflammation-induced FGF10 protein deficiency is associated with bronchopulmonary dysplasia (BPD), a chronic lung disease of prematurely born infants characterized by arrested alveolar development. So far, experimental evidence for a direct role of FGF10 in lung disease is lacking. Using the hyperoxia-induced neonatal lung injury as a mouse model of BPD, the impact of Fgf10 deficiency in Fgf10+/- versus Fgf10+/+ pups was investigated. In normoxia, no lethality of Fgf10+/+ or Fgf10+/- pups was observed. By contrast, all Fgf10+/- pups died within 8 days of hyperoxic injury, with lethality starting at day 5, whereas Fgf10+/+ pups were all alive. Lungs of pups from the two genotypes were collected on postnatal day 3 following normoxia or hyperoxia exposure for further analysis. In hyperoxia, Fgf10+/- lungs exhibited increased hypoalveolarization. Analysis by FACS of the Fgf10+/- versus control lungs in normoxia revealed a decreased ratio of alveolar epithelial type II (AECII) cells over total Epcam-positive cells. In addition, gene array analysis indicated reduced AECII and increased AECI transcriptome signatures in isolated AECII cells from Fgf10+/- lungs. Such an imbalance in differentiation is also seen in hyperoxia and is associated with reduced mature surfactant protein B and C expression. Attenuation of the activity of Fgfr2b ligands postnatally in the context of hyperoxia also led to increased lethality with decreased surfactant expression. In summary, decreased Fgf10 mRNA levels lead to congenital lung defects, which are compatible with postnatal survival, but which compromise the ability of the lungs to cope with sub-lethal hyperoxic injury. Fgf10 deficiency affects quantitatively and qualitatively the formation of AECII cells. In addition, Fgfr2b ligands are also important for repair after hyperoxia exposure in neonates. Deficient AECII cells could be an additional complication for patients with BPD. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Displasia Broncopulmonar/metabolismo , Fator 10 de Crescimento de Fibroblastos/deficiência , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fator 10 de Crescimento de Fibroblastos/genética , Fator 10 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica/fisiologia , Hiperóxia/complicações , Hiperóxia/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Surfactantes Pulmonares/metabolismo , RNA Mensageiro/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo
15.
Mol Cell Pediatr ; 3(1): 17, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27098664

RESUMO

BACKGROUND: Alveologenesis is the last stage in lung development and is essential for building the gas-exchanging units called alveoli. Despite intensive lung research, the intricate crosstalk between mesenchymal and epithelial cell lineages during alveologenesis is poorly understood. This crosstalk contributes to the formation of the secondary septae, which are key structures of healthy alveoli. CONCLUSIONS: A better understanding of the cellular and molecular processes underlying the formation of the secondary septae is critical for the development of new therapies to protect or regenerate the alveoli. This review summarizes briefly the alveologenesis process in mouse and human. Further, it discusses the current knowledge on the epithelial and mesenchymal progenitor cells during early lung development giving rise to the key cellular players (e.g., alveolar epithelial cell type I, alveolar epithelial cell type II, alveolar myofibroblast, lipofibroblast) involved in alveologenesis. This review focusses mainly on the role of fibroblast growth factor 10 (FGF10), one of the most important signaling molecules during lung development, in epithelial and mesenchymal cell lineage formation.

16.
Development ; 142(23): 4139-50, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26511927

RESUMO

Lipid-containing alveolar interstitial fibroblasts (lipofibroblasts) are increasingly recognized as an important component of the epithelial stem cell niche in the rodent lung. Although lipofibroblasts were initially believed merely to assist type 2 alveolar epithelial cells in surfactant production during neonatal life, recent evidence suggests that these cells are indispensable for survival and growth of epithelial stem cells during adulthood. Despite increasing interest in lipofibroblast biology, little is known about their cellular origin or the molecular pathways controlling their formation during embryonic development. Here, we show that a population of lipid-droplet-containing stromal cells emerges in the developing mouse lung between E15.5 and E16.5. This is accompanied by significant upregulation, in the lung mesenchyme, of peroxisome proliferator-activated receptor gamma (master switch of lipogenesis), adipose differentiation-related protein (marker of mature lipofibroblasts) and fibroblast growth factor 10 (previously shown to identify a subpopulation of lipofibroblast progenitors). We also demonstrate that although only a subpopulation of total embryonic lipofibroblasts derives from Fgf10(+) progenitor cells, in vivo knockdown of Fgfr2b ligand activity and reduction in Fgf10 expression lead to global reduction in the expression levels of lipofibroblast markers at E18.5. Constitutive Fgfr1b knockouts and mutants with conditional partial inactivation of Fgfr2b in the lung mesenchyme reveal the involvement of both receptors in lipofibroblast formation and suggest a possible compensation between the two receptors. We also provide data from human fetal lungs to demonstrate the relevance of our discoveries to humans. Our results reveal an essential role for Fgf10 signaling in the formation of lipofibroblasts during late lung development.


Assuntos
Fator 10 de Crescimento de Fibroblastos/metabolismo , Fibroblastos/citologia , Regulação da Expressão Gênica no Desenvolvimento , Pulmão/embriologia , Alvéolos Pulmonares/metabolismo , Tecido Adiposo/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Separação Celular , Células Cultivadas , Células Epiteliais/citologia , Feminino , Citometria de Fluxo , Deleção de Genes , Humanos , Lipídeos/química , Pulmão/metabolismo , Camundongos , Camundongos Transgênicos , PPAR gama/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Fatores de Tempo , Regulação para Cima
17.
Development ; 141(2): 296-306, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24353064

RESUMO

The lung mesenchyme consists of a widely heterogeneous population of cells that play crucial roles during development and homeostasis after birth. These cells belong to myogenic, adipogenic, chondrogenic, neuronal and other lineages. Yet, no clear hierarchy for these lineages has been established. We have previously generated a novel Fgf10(iCre) knock-in mouse line that allows lineage tracing of Fgf10-positive cells during development and postnatally. Using these mice, we hereby demonstrate the presence of two waves of Fgf10 expression during embryonic lung development: the first wave, comprising Fgf10-positive cells residing in the submesothelial mesenchyme at early pseudoglandular stage (as well as their descendants); and the second wave, comprising Fgf10-positive cells from late pseudoglandular stage (as well as their descendants). Our lineage-tracing data reveal that the first wave contributes to the formation of parabronchial and vascular smooth muscle cells as well as lipofibroblasts at later developmental stages, whereas the second wave does not give rise to smooth muscle cells but to lipofibroblasts as well as an Nkx2.1(-) E-Cad(-) Epcam(+) Pro-Spc(+) lineage that requires further in-depth analysis. During alveologenesis, Fgf10-positive cells give rise to lipofibroblasts rather than alveolar myofibroblasts, and during adult life, a subpopulation of Fgf10-expressing cells represents a pool of resident mesenchymal stromal (stem) cells (MSCs) (Cd45(-) Cd31(-) Sca-1(+)). Taken together, we show for the first time that Fgf10-expressing cells represent a pool of mesenchymal progenitors in the embryonic and postnatal lung. Our findings suggest that Fgf10-positive cells could be useful for developing stem cell-based therapies for treating interstitial lung diseases.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fator 10 de Crescimento de Fibroblastos/metabolismo , Pulmão/embriologia , Pulmão/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Linhagem da Célula , Movimento Celular , Feminino , Fator 10 de Crescimento de Fibroblastos/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Pulmão/crescimento & desenvolvimento , Camundongos , Camundongos Transgênicos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Gravidez , Alvéolos Pulmonares/embriologia , Alvéolos Pulmonares/crescimento & desenvolvimento , Alvéolos Pulmonares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...