Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Calcium ; 121: 102894, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38728789

RESUMO

TRPV2 voltage-insensitive, calcium-permeable ion channels play important roles in cancer progression, immune response, and neuronal development. Despite TRPV2's physiological impact, underlying endogenous proteins mediating TRPV2 responses and affected signaling pathways remain elusive. Using quantitative peroxidase-catalyzed (APEX2) proximity proteomics we uncover dynamic changes in the TRPV2-proximal proteome and identify calcium signaling and cell adhesion factors recruited to the molecular channel neighborhood in response to activation. Quantitative TRPV2 proximity proteomics further revealed activation-induced enrichment of protein clusters with biological functions in neural and cellular projection. We demonstrate a functional connection between TRPV2 and the neural immunoglobulin cell adhesion molecules NCAM and L1CAM. NCAM and L1CAM stimulation robustly induces TRPV2 [Ca2+]I flux in neuronal PC12 cells and this TRPV2-specific [Ca2+]I flux requires activation of the protein kinase PKCα. TRPV2 expression directly impacts neurite lengths that are modulated by NCAM or L1CAM stimulation. Hence, TRPV2's calcium signaling plays a previously undescribed, yet vital role in cell adhesion, and TRPV2 calcium flux and neurite development are intricately linked via NCAM and L1CAM cell adhesion proteins.

2.
EMBO J ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671253

RESUMO

Transient receptor potential (TRP) ion channels are involved in the surveillance or regulation of the acid-base balance. Here, we demonstrate that weak carbonic acids, including acetic acid, lactic acid, and CO2 activate and sensitize TRPV2 through a mechanism requiring permeation through the cell membrane. TRPV2 channels in cell-free inside-out patches maintain weak acid-sensitivity, but protons applied on either side of the membrane do not induce channel activation or sensitization. The involvement of proton modulation sites for weak acid-sensitivity was supported by the identification of titratable extracellular (Glu495, Glu561) and intracellular (His521) residues on a cryo-EM structure of rat TRPV2 (rTRPV2) treated with acetic acid. Molecular dynamics simulations as well as patch clamp experiments on mutant rTRPV2 constructs confirmed that these residues are critical for weak acid-sensitivity. We also demonstrate that the pore residue Glu609 dictates an inhibition of weak acid-induced currents by extracellular calcium. Finally, TRPV2-expression in HEK293 cells is associated with an increased weak acid-induced cytotoxicity. Together, our data provide new insights into weak acids as endogenous modulators of TRPV2.

3.
EMBO Rep ; 25(2): 506-523, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225355

RESUMO

Transient receptor potential vanilloid (TRPV) channels play a critical role in calcium homeostasis, pain sensation, immunological response, and cancer progression. TRPV channels are blocked by ruthenium red (RR), a universal pore blocker for a wide array of cation channels. Here we use cryo-electron microscopy to reveal the molecular details of RR block in TRPV2 and TRPV5, members of the two TRPV subfamilies. In TRPV2 activated by 2-aminoethoxydiphenyl borate, RR is tightly coordinated in the open selectivity filter, blocking ion flow and preventing channel inactivation. In TRPV5 activated by phosphatidylinositol 4,5-bisphosphate, RR blocks the selectivity filter and closes the lower gate through an interaction with polar residues in the pore vestibule. Together, our results provide a detailed understanding of TRPV subfamily pore block, the dynamic nature of the selectivity filter and allosteric communication between the selectivity filter and lower gate.


Assuntos
Antineoplásicos , Canais de Potencial de Receptor Transitório , Canais de Cátion TRPV/genética , Rutênio Vermelho/farmacologia , Microscopia Crioeletrônica , Cálcio/metabolismo
4.
Structure ; 32(2): 148-156.e5, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38141613

RESUMO

The calcium-selective TRPV5 channel activated by phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is involved in calcium homeostasis. Recently, cryoelectron microscopy (cryo-EM) provided molecular details of TRPV5 modulation by exogenous and endogenous molecules. However, the details of TRPV5 inhibition by the antifungal agent econazole (ECN) remain elusive due to the low resolution of the currently available structure. In this study, we employ cryo-EM to comprehensively examine how the ECN inhibits TRPV5. By combining our structural findings with site-directed mutagenesis, calcium measurements, electrophysiology, and molecular dynamics simulations, we determined that residues F472 and L475 on the S4 helix, along with residue W495 on the S5 helix, collectively constitute the ECN-binding site. Additionally, the structure of TRPV5 in the presence of ECN and PI(4,5)P2, which does not show the bound activator, reveals a potential inhibition mechanism in which ECN competes with PI(4,5)P2, preventing the latter from binding, and ultimately pore closure.


Assuntos
Antifúngicos , Econazol , Canais de Cátion TRPV , Antifúngicos/farmacologia , Cálcio/metabolismo , Microscopia Crioeletrônica , Econazol/farmacologia , Simulação de Dinâmica Molecular , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/química
5.
Commun Biol ; 6(1): 966, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37736816

RESUMO

Transient receptor potential (TRP) ion channels are gated by diverse intra- and extracellular stimuli leading to cation inflow (Na+, Ca2+) regulating many cellular processes and initiating organismic somatosensation. Structures of most TRP channels have been solved. However, structural and sequence analysis showed that ~30% of the TRP channel sequences, mainly the N- and C-termini, are intrinsically disordered regions (IDRs). Unfortunately, very little is known about IDR 'structure', dynamics and function, though it has been shown that they are essential for native channel function. Here, we imaged TRPV2 channels in membranes using high-speed atomic force microscopy (HS-AFM). The dynamic single molecule imaging capability of HS-AFM allowed us to visualize IDRs and revealed that N-terminal IDRs were involved in intermolecular interactions. Our work provides evidence about the 'structure' of the TRPV2 IDRs, and that the IDRs may mediate protein-protein interactions.


Assuntos
Proteínas Intrinsicamente Desordenadas , Canais de Cátion TRPV , Microscopia de Força Atômica , Imagem Individual de Molécula
6.
Nat Commun ; 14(1): 5883, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735536

RESUMO

Long-chain acyl-coenzyme A (LC-CoA) is a crucial metabolic intermediate that plays important cellular regulatory roles, including activation and inhibition of ion channels. The structural basis of ion channel regulation by LC-CoA is not known. Transient receptor potential vanilloid 5 and 6 (TRPV5 and TRPV6) are epithelial calcium-selective ion channels. Here, we demonstrate that LC-CoA activates TRPV5 and TRPV6 in inside-out patches, and both exogenously supplied and endogenously produced LC-CoA can substitute for the natural ligand phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) in maintaining channel activity in intact cells. Utilizing cryo-electron microscopy, we determined the structure of LC-CoA-bound TRPV5, revealing an open configuration with LC-CoA occupying the same binding site as PI(4,5)P2 in previous studies. This is consistent with our finding that PI(4,5)P2 could not further activate the channels in the presence of LC-CoA. Our data provide molecular insights into ion channel regulation by a metabolic signaling molecule.


Assuntos
Acil Coenzima A , Canais de Cálcio , Microscopia Crioeletrônica , Sítios de Ligação , Ciclo Celular
7.
Vitam Horm ; 123: 439-481, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37717994

RESUMO

The Androgen Receptor (AR) is a ligand (androgen) activated transcription factor and a member of the nuclear receptor (NR) superfamily. It is required for male sex hormone function. AR-FL (full-length) has the domain structure of NRs, an N-terminal domain (NTD) required for transactivation, a DNA-binding domain (DBD), a nuclear localization signal (NLS) and a ligand-binding domain (LBD). Paradoxes exist in that endogenous ligands testosterone (T) and 5α-dihydrotestosterone (DHT) have differential effects on male sexual development while binding to the same receptor and transcriptional specificity is achieved even though the androgen response elements (AREs) are identical to those seen for the progesterone, glucocorticoid and mineralocorticoid receptors. A high resolution 3-dimensional structure of AR-FL by either cryo-EM or X-ray crystallography has remained elusive largely due to the intrinsic disorder of the NTD. AR function is regulated by post-translational modification leading to a large number of proteoforms. The interaction of these proteoforms in multiprotein complexes with co-activators and co-repressors driven by interdomain coupling mediates the AR transcriptional output. The AR is a drug target for selective androgen receptor modulators (SARMS) that either have anabolic or androgenic effects. Protstate cancer is treated with androgen deprivation therapy or by the use of AR antagonists that bind to the LBD. Drug resistance occurs due to adaptive AR upregulation and the appearance of splice variants that lack the LBD and become constitutively active. Bipolar T treatment and NTD-antagonists could surmount these resistance mechanisms, respectively. These recent advances in AR signaling are described.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/genética , Androgênios , Antagonistas de Androgênios , Ligantes
8.
Sci Adv ; 9(22): eadh4251, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37256948

RESUMO

Mitochondrial uncoupling protein 1 (UCP1) gives brown adipose tissue of mammals its specialized ability to burn calories as heat for thermoregulation. When activated by fatty acids, UCP1 catalyzes the leak of protons across the mitochondrial inner membrane, short-circuiting the mitochondrion to generate heat, bypassing ATP synthesis. In contrast, purine nucleotides bind and inhibit UCP1, regulating proton leak by a molecular mechanism that is unclear. We present the cryo-electron microscopy structure of the GTP-inhibited state of UCP1, which is consistent with its nonconducting state. The purine nucleotide cross-links the transmembrane helices of UCP1 with an extensive interaction network. Our results provide a structural basis for understanding the specificity and pH dependency of the regulatory mechanism. UCP1 has retained all of the key functional and structural features required for a mitochondrial carrier-like transport mechanism. The analysis shows that inhibitor binding prevents the conformational changes that UCP1 uses to facilitate proton leak.


Assuntos
Canais Iônicos , Prótons , Humanos , Microscopia Crioeletrônica , Canais Iônicos/química , Proteínas Mitocondriais/metabolismo , Nucleotídeos de Purina , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
9.
Protein Sci ; 32(1): e4490, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36327382

RESUMO

Transient receptor potential vanilloid (TRPV) channels play various important roles in human physiology. As membrane proteins, these channels are modulated by their endogenous lipid environment as the recent wealth of structural studies has revealed functional and structural lipid binding sites. Additionally, it has been shown that exogenous ligands can exchange with some of these lipids to alter channel gating. Here, we used molecular dynamics simulations to examine how one member of the TRPV family, TRPV2, interacts with endogenous lipids and the pharmacological modulator cannabidiol (CBD). By computationally reconstituting TRPV2 into a typical plasma membrane environment, which includes phospholipids, cholesterol, and phosphatidylinositol (PIP) in the inner leaflet, we showed that most of the interacting surface lipids are phospholipids without strong specificity for headgroup types. Intriguingly, we observed that the C-terminal membrane proximal region of the channel binds preferentially to PIP lipids. We also modelled two structural lipids in the simulation: one in the vanilloid pocket and the other in the voltage sensor-like domain (VSLD) pocket. The simulation shows that the VSLD lipid dampens the fluctuation of the VSLD residues, while the vanilloid lipid exhibits heterogeneity both in its binding pose and in its influence on protein dynamics. Addition of CBD to our simulation system led to an open selectivity filter and a structural rearrangement that includes a clockwise rotation of the ankyrin repeat domains, TRP helix, and VSLD. Together, these results reveal the interplay between endogenous lipids and an exogenous ligand and their effect on TRPV2 stability and channel gating.


Assuntos
Antineoplásicos , Canais de Cátion TRPV , Humanos , Canais de Cátion TRPV/química , Ligantes , Repetição de Anquirina , Sítios de Ligação , Fosfolipídeos
10.
Cell Calcium ; 106: 102620, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35834842

RESUMO

Transient Receptor Potential Vanilloid 5 and 6 (TRPV5 and TRPV6) are Ca2+ selective epithelial ion channels. They are the products of a relatively recent gene duplication in mammals, and have high sequence homology to each other. Their functional properties are also much more similar to each other than to other members of the TRPV subfamily. They are both constitutively active, and this activity depends on the endogenous cofactor phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Both channels undergo Ca2+-induced inactivation, which is mediated by direct binding of the ubiquitous Ca2+ binding protein calmodulin (CaM) to the channels, and by a decrease in PI(4,5)P2 levels by Ca2+ -induced activation of phospholipase C (PLC). Recent cryo electron microscopy (cryo-EM) and X-ray crystallography structures provided detailed structural information for both TRPV5 and TRPV6. This review will discuss this structural information in the context of the function of these channels focusing on the mechanism of CaM inhibition, activation by PI(4,5)P2 and binding of pharmacological modulators.


Assuntos
Cálcio , Canais de Cátion TRPV , Animais , Cálcio/metabolismo , Calmodulina/metabolismo , Microscopia Crioeletrônica , Mamíferos/metabolismo , Fosfatidilinositóis , Canais de Cátion TRPV/metabolismo
11.
Cell Rep ; 39(4): 110737, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35476976

RESUMO

Transient receptor potential vanilloid 5 (TRPV5) is a kidney-specific Ca2+-selective ion channel that plays a key role in Ca2+ homeostasis. The basal activity of TRPV5 is balanced through activation by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and inhibition by Ca2+-bound calmodulin (CaM). Parathyroid hormone (PTH), the key extrinsic regulator of Ca2+ homeostasis, increases the activity of TRPV5 via protein kinase A (PKA)-mediated phosphorylation. Metabolic acidosis leads to reduced TRPV5 activity independent of PTH, causing hypercalciuria. Using cryoelectron microscopy (cryo-EM), we show that low pH inhibits TRPV5 by precluding PI(4,5)P2 activation. We capture intermediate conformations at low pH, revealing a transition from open to closed state. In addition, we demonstrate that PI(4,5)P2 is the primary modulator of channel gating, yet PKA controls TRPV5 activity by preventing CaM binding and channel inactivation. Our data provide detailed molecular mechanisms for regulation of TRPV5 by two key extrinsic modulators, low pH and PKA.


Assuntos
Cálcio , Canais de Cátion TRPV , Cálcio/metabolismo , Sinalização do Cálcio , Calmodulina/metabolismo , Microscopia Crioeletrônica , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hormônio Paratireóideo , Canais de Cátion TRPV/genética
12.
Nat Commun ; 13(1): 2334, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484159

RESUMO

Transient receptor potential vanilloid 2 (TRPV2) is involved in many critical physiological and pathophysiological processes, making it a promising drug target. Here we present cryo-electron microscopy (cryo-EM) structures of rat TRPV2 in lipid nanodiscs activated by 2-aminoethoxydiphenyl borate (2-APB) and propose a TRPV2-specific 2-ABP binding site at the interface of S5 of one monomer and the S4-S5 linker of the adjacent monomer. In silico docking and electrophysiological studies confirm the key role of His521 and Arg539 in 2-APB activation of TRPV2. Additionally, electrophysiological experiments show that the combination of 2-APB and cannabidiol has a synergetic effect on TRPV2 activation, and cryo-EM structures demonstrate that both drugs were able to bind simultaneously. Together, our cryo-EM structures represent multiple functional states of the channel, providing a native picture of TRPV2 activation by small molecules and a structural framework for the development of TRPV2-specific activators.


Assuntos
Canais de Cátion TRPV , Animais , Sítios de Ligação , Microscopia Crioeletrônica , Domínios Proteicos , Ratos , Canais de Cátion TRPV/metabolismo
13.
Structure ; 30(1): 139-155.e5, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34453887

RESUMO

Transient receptor potential (TRP) channels emerged in fungi as mechanosensitive osmoregulators. The Saccharomyces cerevisiae vacuolar TRP yeast 1 (TRPY1) is the most studied TRP channel from fungi, but the structure and details of channel modulation remain elusive. Here, we describe the full-length cryoelectron microscopy structure of TRPY1 at 3.1 Å resolution in a closed state. The structure, despite containing an evolutionarily conserved and archetypical transmembrane domain, reveals distinctive structural folds for the cytosolic N and C termini, compared with other eukaryotic TRP channels. We identify an inhibitory phosphatidylinositol 3-phosphate (PI(3)P) lipid-binding site, along with two Ca2+-binding sites: a cytosolic site, implicated in channel activation and a vacuolar lumen site, implicated in inhibition. These findings, together with data from microsecond-long molecular dynamics simulations and a model of a TRPY1 open state, provide insights into the basis of TRPY1 channel modulation by lipids and Ca2+, and the molecular evolution of TRP channels.


Assuntos
Cálcio/metabolismo , Fosfatos de Fosfatidilinositol/farmacologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Canais de Cátion TRPC/química , Canais de Cátion TRPC/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Citosol/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Fosfatos de Fosfatidilinositol/química , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Saccharomyces cerevisiae/química
14.
J Virol ; 95(20): e0116421, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34346767

RESUMO

One approach to improve the utility of adeno-associated virus (AAV)-based gene therapy is to engineer the AAV capsid to (i) overcome poor transport through tissue barriers and (ii) redirect the broadly tropic AAV to disease-relevant cell types. Peptide- or protein-domain insertions into AAV surface loops can achieve both engineering goals by introducing a new interaction surface on the AAV capsid. However, we understand little about the impact of insertions on capsid structure and the extent to which engineered inserts depend on a specific capsid context to function. Here, we examine insert-capsid interactions for the engineered variant AAV9-PHP.B. The 7-amino-acid peptide insert in AAV9-PHP.B facilitates transport across the murine blood-brain barrier via binding to the receptor Ly6a. When transferred to AAV1, the engineered peptide does not bind Ly6a. Comparative structural analysis of AAV1-PHP.B and AAV9-PHP.B revealed that the inserted 7-amino-acid loop is highly flexible and has remarkably little impact on the surrounding capsid conformation. Our work demonstrates that Ly6a binding requires interactions with both the PHP.B peptide and specific residues from the AAV9 HVR VIII region. An AAV1-based vector that incorporates a larger region of AAV9-PHP.B-including the 7-amino-acid loop and adjacent HVR VIII amino acids-can bind to Ly6a and localize to brain tissue. However, unlike AAV9-PHP.B, this AAV1-based vector does not penetrate the blood-brain barrier. Here we discuss the implications for AAV capsid engineering and the transfer of engineered activities between serotypes. IMPORTANCE Targeting AAV vectors to specific cellular receptors is a promising strategy for enhancing expression in target cells or tissues while reducing off-target transgene expression. The AAV9-PHP.B/Ly6a interaction provides a model system with a robust biological readout that can be interrogated to better understand the biology of AAV vectors' interactions with target receptors. In this work, we analyzed the sequence and structural features required to successfully transfer the Ly6a receptor-binding epitope from AAV9-PHP.B to another capsid of clinical interest, AAV1. We found that AAV1- and AAV9-based vectors targeted to the same receptor exhibited different brain-transduction profiles. Our work suggests that, in addition to attachment-receptor binding, the capsid context in which this binding occurs is important for a vector's performance.


Assuntos
Terapia Genética/métodos , Vetores Genéticos/genética , Ligação Proteica/genética , Aminoácidos/genética , Animais , Antígenos Ly/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Dependovirus/genética , Dependovirus/metabolismo , Técnicas de Transferência de Genes , Engenharia Genética/métodos , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Peptídeos/genética , Domínios Proteicos/genética , Transdução Genética/métodos , Transgenes/genética
15.
Mol Cell ; 81(15): 3145-3159.e7, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34214465

RESUMO

Hershey and Chase used bacteriophage T2 genome delivery inside Escherichia coli to demonstrate that DNA, not protein, is the genetic material. Seventy years later, our understanding of viral genome delivery in prokaryotes remains limited, especially for short-tailed phages of the Podoviridae family. These viruses expel mysterious ejection proteins found inside the capsid to form a DNA-ejectosome for genome delivery into bacteria. Here, we reconstitute the phage T7 DNA-ejectosome components gp14, gp15, and gp16 and solve the periplasmic tunnel structure at 2.7 Å resolution. We find that gp14 forms an outer membrane pore, gp15 assembles into a 210 Å hexameric DNA tube spanning the host periplasm, and gp16 extends into the host cytoplasm forming a ∼4,200 residue hub. Gp16 promotes gp15 oligomerization, coordinating peptidoglycan hydrolysis, DNA binding, and lipid insertion. The reconstituted gp15:gp16 complex lacks channel-forming activity, suggesting that the pore for DNA passage forms only transiently during genome ejection.


Assuntos
Bacteriófago T7/genética , DNA Viral/química , Periplasma/química , Proteínas do Core Viral/química , Biologia Computacional , Microscopia Crioeletrônica , Citoplasma/química , DNA Viral/metabolismo , Bicamadas Lipídicas/metabolismo , Periplasma/genética , Periplasma/metabolismo , Podoviridae/química , Podoviridae/genética , Proteínas do Core Viral/metabolismo
17.
ACS Cent Sci ; 7(5): 868-881, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34079902

RESUMO

The use of computational tools to identify biological targets of natural products with anticancer properties and unknown modes of action is gaining momentum. We employed self-organizing maps to deconvolute the phenotypic effects of piperlongumine (PL) and establish a link to modulation of the human transient receptor potential vanilloid 2 (hTRPV2) channel. The structure of the PL-bound full-length rat TRPV2 channel was determined by cryo-EM. PL binds to a transient allosteric pocket responsible for a new mode of anticancer activity against glioblastoma (GBM) in which hTRPV2 is overexpressed. Calcium imaging experiments revealed the importance of Arg539 and Thr522 residues on the antagonistic effect of PL and calcium influx modulation of the TRPV2 channel. Downregulation of hTRPV2 reduces sensitivity to PL and decreases ROS production. Analysis of GBM patient samples associates hTRPV2 overexpression with tumor grade, disease progression, and poor prognosis. Extensive tumor abrogation and long term survival was achieved in two murine models of orthotopic GBM by formulating PL in an implantable scaffold/hydrogel for sustained local therapy. Furthermore, in primary tumor samples derived from GBM patients, we observed a selective reduction of malignant cells in response to PL ex vivo. Our results establish a broadly applicable strategy, leveraging data-motivated research hypotheses for the discovery of novel means tackling cancer.

18.
Methods Enzymol ; 653: 49-74, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34099181

RESUMO

The transient receptor potential (TRP) vanilloid 2 (TRPV2) and TRP vanilloid 5 (TRPV5) cation channels play an important role in various physiological and pathophysiological processes. The heterologous expression and purification of these channels is critical for functional and structural characterization of these important proteins. Full-length rat TRPV2 and rabbit TRPV5 can both be expressed in Saccharomyces cerevisiae and affinity purified using the 1D4 epitope and antibody to yield pure, functional channels. Further, these channels can be reconstituted into lipid nanodiscs for a more functionally relevant environment. Presented here are protocols for the expression of full-length rat TRPV2 and rabbit TRPV5 in Saccharomyces cerevisiae, their affinity purification, and their reconstitution into nanodiscs for structural and functional studies.


Assuntos
Canais de Cátion TRPV , Animais , Coelhos , Ratos , Canais de Cátion TRPV/genética
19.
J Mol Biol ; 433(17): 166914, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-33676926

RESUMO

Transient receptor potential (TRP) ion channels are a super-family of ion channels that mediate transmembrane cation flux with polymodal activation, ranging from chemical to physical stimuli. Furthermore, due to their ubiquitous expression and role in human diseases, they serve as potential pharmacological targets. Advances in cryo-EM TRP channel structural biology has revealed general, as well as diverse, architectural elements and regulatory sites among TRP channel subfamilies. Here, we review the endogenous and pharmacological ligand-binding sites of TRP channels and their regulatory mechanisms.


Assuntos
Preparações Farmacêuticas/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Sítios de Ligação/fisiologia , Microscopia Crioeletrônica/métodos , Humanos , Ligantes
20.
J Biol Chem ; 296: 100240, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33384381

RESUMO

Castration resistant prostate cancer (CRPC) continues to be androgen receptor (AR) driven. Inhibition of AR signaling in CRPC could be advanced using state-of-the-art biophysical and biochemical techniques. Structural characterization of AR and its complexes by cryo-electron microscopy would advance the development of N-terminal domain (NTD) and ligand-binding domain (LBD) antagonists. The structural basis of AR function is unlikely to be determined by any single structure due to the intrinsic disorder of its NTD, which not only interacts with coregulators but likely accounts for the constitutive activity of AR-splice variants (SV), which lack the LBD and emerge in CRPC. Using different AR constructs lacking the LBD, their effects on protein folding, DNA binding, and transcriptional activity could reveal how interdomain coupling explains the activity of AR-SVs. The AR also interacts with coregulators that promote chromatin looping. Elucidating the mechanisms involved can identify vulnerabilities to treat CRPC, which do not involve targeting the AR. Phosphorylation of the AR coactivator MED-1 by CDK7 is one mechanism that can be blocked by the use of CDK7 inhibitors. CRPC gains resistance to AR signaling inhibitors (ARSI). Drug resistance may involve AR-SVs, but their role requires their reliable quantification by SILAC-mass spectrometry during disease progression. ARSI drug resistance also occurs by intratumoral androgen biosynthesis catalyzed by AKR1C3 (type 5 17ß-hydroxysteroid dehydrogenase), which is unique in that its acts as a coactivator of AR. Novel bifunctional inhibitors that competitively inhibit AKR1C3 and block its coactivator function could be developed using reverse-micelle NMR and fragment-based drug discovery.


Assuntos
Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais , Fenômenos Bioquímicos , Fenômenos Biofísicos , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...