Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Opt Lett ; 48(13): 3515-3518, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390169

RESUMO

The peculiarities of two-state lasing in a racetrack microlaser with an InAs/GaAs quantum dot active region are investigated by measuring the electroluminescence spectra at various injection currents and temperatures. Unlike edge-emitting and microdisk lasers, where two-state lasing involves the ground and first excited-state optical transitions of quantum dots, in racetrack microlasers, we observe lasing through the ground and second excited states. As a result, the spectral separation between lasing bands is doubled to more than 150 nm. A temperature dependence of threshold currents for lasing via ground and second excited states of quantum dots was also obtained.


Assuntos
Pontos Quânticos , Temperatura
2.
Small ; 19(28): e2301660, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37178371

RESUMO

Emerging technologies for integrated optical circuits demand novel approaches and materials. This includes a search for nanoscale waveguides that should satisfy criteria of high optical density, small cross-section, technological feasibility and structural perfection. All these criteria are met with self-assembled gallium phosphide (GaP) epitaxial nanowires. In this work, the effects of the nanowire geometry on their waveguiding properties are studied both experimentally and numerically. Cut-off wavelength dependence on the nanowire diameter is analyzed to demonstrate the pathways for fabrication of low-loss and subwavelength cross-section waveguides for visible and near-infrared (IR) ranges. Probing the waveguides with a supercontinuum laser unveils the filtering properties of the nanowires due to their resonant action. The nanowires exhibit perfect elasticity allowing fabrication of curved waveguides. It is demonstrated that for the nanowire diameters exceeding the cut-off value, the bending does not sufficiently reduce the field confinement promoting applicability of the approach for the development of nanoscale waveguides with a preassigned geometry. Optical X-coupler made of two GaP nanowires allowing for spectral separation of the signal is fabricated. The results of this work open new ways for the utilization of GaP nanowires as elements of advanced photonic logic circuits and nanoscale interferometers.

3.
Nanomaterials (Basel) ; 13(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36903756

RESUMO

One-state and two-state lasing is investigated experimentally and through numerical simulation as a function of temperature in microdisk lasers with Stranski-Krastanow InAs/InGaAs/GaAs quantum dots. Near room temperature, the temperature-induced increment of the ground-state threshold current density is relatively weak and can be described by a characteristic temperature of about 150 K. At elevated temperatures, a faster (super-exponential) increase in the threshold current density is observed. Meanwhile, the current density corresponding to the onset of two-state lasing was found to decrease with increasing temperature, so that the interval of current density of pure one-state lasing becomes narrower with the temperature increase. Above a certain critical temperature, ground-state lasing completely disappears. This critical temperature drops from 107 to 37 °C as the microdisk diameter decreases from 28 to 20 µm. In microdisks with a diameter of 9 µm, a temperature-induced jump in the lasing wavelength from the first excited-state to second excited-state optical transition is observed. A model describing the system of rate equations and free carrier absorption dependent on the reservoir population provides a satisfactory agreement with experimental results. The temperature and threshold current corresponding to the quenching of ground-state lasing can be well approximated by linear functions of saturated gain and output loss.

4.
Nanomaterials (Basel) ; 12(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36500837

RESUMO

We study photoluminescence of InP/InAsP/InP nanostructures monolithically integrated to a Si(100) substrate. The InP/InAsP/InP nanostructures were grown in pre-formed pits in the silicon substrate using an original approach based on selective area growth and driven by a molten alloy in metal-organic vapor epitaxy method. This approach provides the selective-area synthesis of the ordered emitters arrays on Si substrates. The obtained InP/InAsP/InP nanostructures have a submicron size. The individual InP/InAsP/InP nanostructures were investigated by photoluminescence spectroscopy at room temperature. The tuning of the emission line in the spectral range from 1200 nm to 1550 nm was obtained depending on the growth parameters. These results provide a path for the growth on Si(100) substrate of position-controlled heterojunctions based on InAs1-xPx for nanoscale optical devices operating at the telecom band.

5.
Nanomaterials (Basel) ; 11(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34684990

RESUMO

We demonstrate flexible red light-emitting diodes based on axial GaPAs/GaP heterostructured nanowires embedded in polydimethylsiloxane membranes with transparent electrodes involving single-walled carbon nanotubes. The GaPAs/GaP axial nanowire arrays were grown by molecular beam epitaxy, encapsulated into a polydimethylsiloxane film, and then released from the growth substrate. The fabricated free-standing membrane of light-emitting diodes with contacts of single-walled carbon nanotube films has the main electroluminescence line at 670 nm. Membrane-based light-emitting diodes (LEDs) were compared with GaPAs/GaP NW array LED devices processed directly on Si growth substrate revealing similar electroluminescence properties. Demonstrated membrane-based red LEDs are opening an avenue for flexible full color inorganic devices.

6.
Opt Lett ; 46(16): 3853-3856, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34388758

RESUMO

We study the impact of improved heat removal on the performance of InGaAs/GaAs microdisk lasers epi-side down bonded onto a silicon substrate. Unlike the initial characteristics of microlasers on a GaAs substrate, the former's bonding results in a decrease in thermal resistance by a factor of 2.3 (1.8) in microdisks with a diameter of 19 (31) µm, attributed to a thinner layered structure between the active region and the substrate and the better thermal conductivity of Si than GaAs. Bonded microdisk lasers show a 2.4-3.4-fold higher maximum output power, up to 21.7 mW, and an approximately 20% reduction in the threshold current. A record high 3 dB small-signal modulation bandwidth of 7.9 GHz for InGaAs/GaAs microdisk lasers is achieved.

7.
ACS Appl Mater Interfaces ; 12(49): 55141-55147, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33249829

RESUMO

We propose a novel strategy to enhance optoelectrical properties of single-walled carbon nanotube (SWCNT) films for transparent electrode applications by film patterning. First, we theoretically considered the effect of the conducting pattern geometry on the film quality factor and then experimentally examined the calculated structures. We extend these results to show that the best characteristics of patterned SWCNT films can be achieved using the combination of initial film properties: low transmittance and high conductivity. The proposed strategy allows the patterned layers of SWCNTs to outperform the widely used indium-tin-oxide electrodes on both flexible and rigid substrates.

8.
Materials (Basel) ; 13(10)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443456

RESUMO

An InAs/InGaAs quantum dot laser with a heterostructure epitaxially grown on a silicon substrate was used to fabricate injection microdisk lasers of different diameters (15-31 µm). A post-growth process includes photolithography and deep dry etching. No surface protection/passivation is applied. The microlasers are capable of operating heatsink-free in a continuous-wave regime at room and elevated temperatures. A record-low threshold current density of 0.36 kA/cm2 was achieved in 31 µm diameter microdisks operating uncooled. In microlasers with a diameter of 15 µm, the minimum threshold current density was found to be 0.68 kA/cm2. Thermal resistance of microdisk lasers monolithically grown on silicon agrees well with that of microdisks on GaAs substrates. The ageing test performed for microdisk lasers on silicon during 1000 h at a constant current revealed that the output power dropped by only ~9%. A preliminary estimate of the lifetime for quantum-dot (QD) microlasers on silicon (defined by a double drop of the power) is 83,000 h. Quantum dot microdisk lasers made of a heterostructure grown on GaAs were transferred onto a silicon wafer using indium bonding. Microlasers have a joint electrical contact over a residual n+ GaAs substrate, whereas their individual addressing is achieved by placing them down on a p-contact to separate contact pads. These microdisks hybridly integrated to silicon laser at room temperature in a continuous-wave mode. No effect of non-native substrate on device characteristics was found.

9.
Opt Lett ; 44(22): 5442-5445, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730078

RESUMO

We report on direct large signal modulation and the reliability studies of microdisk lasers based on InGaAs/GaAs quantum well-dots. A 23 µm in diameter microlaser exhibits an open eye diagram up to 12.5 Gbit/s and is capable of error-free 10 Gbit/s data transmission at 30°C without temperature stabilization. The ageing tests of a 31 µm in diameter microdisk laser were conducted at room and elevated temperatures during more than 1200 hr. The average rate of the output power degradation was about 25 and 29 nW/hr at 40°C and 60°C, respectively.

10.
Opt Lett ; 43(19): 4554-4557, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30272681

RESUMO

We study injection GaAs-based microdisk lasers capable of operating at room and elevated temperatures. A novel type of active region is used, namely InGaAs quantum well-dots representing a dense array of indium-rich islands formed inside an indium-depleted residual quantum well by metalorganic vapor phase epitaxy. We demonstrate a high output power of 18 mW, a differential efficiency of about 31%, and a peak electrical-to-optical power conversion efficiency of 15% in a 31 µm diameter microdisk laser. The continuous-wave lasing is observed up to 110°C.

11.
Opt Lett ; 42(17): 3319-3322, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957093

RESUMO

High-performance injection microdisk (MD) lasers grown on Si substrate are demonstrated for the first time, to the best of our knowledge. Continuous-wave (CW) lasing in microlasers with diameters from 14 to 30 µm is achieved at room temperature. The minimal threshold current density of 600 A/cm2 (room temperature, CW regime, heatsink-free uncooled operation) is comparable to that of high-quality MD lasers on GaAs substrates. Microlasers on silicon emit in the wavelength range of 1320-1350 nm via the ground state transition of InAs/InGaAs/GaAs quantum dots. The high stability of the lasing wavelength (dλ/dI=0.1 nm/mA) and the low specific thermal resistance of 4×10-3°C×cm2/W are demonstrated.

12.
Nanoscale Res Lett ; 9(1): 3266, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26264786

RESUMO

Ultrasmall microring and microdisk lasers with an asymmetric air/GaAs/Al0.98Ga0.02As waveguide and an active region based on InAs/InGaAs/GaAs quantum dots emitting around 1.3 µm were fabricated and studied. The diameter D of the microrings and microdisks was either 2 or 1.5 µm, and the inner diameter d of the microrings varied from 20% to 70% of the outer diameter D. The microring with D = 2 µm and d = 0.8 µm demonstrated a threshold pump power as low as 1.8 µW at room temperature. Lasing was observed up to 100°C owing to the use of quantum dots providing high confinement energy both for electrons and holes. Tuning spectral positions of the whispering gallery modes via changing the inner diameters of the microrings was demonstrated. PACS: 78.67.Hc; 42.55.Sa; 42.50.Pq; 78.55.Cr.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...