Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 47(7): 2351-2361, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38516728

RESUMO

Plants are able to naturally graft or inosculate their trunks, branches and roots together, this mechanism is used by humans to graft together different genotypes for a range of purposes. Grafts are considered successful if functional vascular connections between the two genotypes occur. Various techniques can evaluate xylem connections across the graft interface. However, these methods are generally unable to assess the heterogeneity and three-dimensional (3D) structure of xylem vessel connections. Here we present the use of X-ray micro-computed tomography to characterize the 3D morphology of grafts of grapevine. We show that xylem vessels form between the two plants of natural root and human-made stem grafts. The main novelty of this methodology is that we were able to visualize the 3D network of functional xylem vessels connecting the scion and rootstock in human-made stem grafts thanks to the addition of a contrast agent to the roots and improved image analysis pipelines. In addition, we reveal the presence of extensive diagonal xylem connections between the main axial xylem vessels in 2-year old grapevine stems. In conclusion, we present a method that has the potential to provide new insights into the structure and function of xylem vessels in large tissue samples.


Assuntos
Fenótipo , Caules de Planta , Vitis , Microtomografia por Raio-X , Xilema , Xilema/anatomia & histologia , Xilema/fisiologia , Microtomografia por Raio-X/métodos , Caules de Planta/anatomia & histologia , Raízes de Plantas/anatomia & histologia , Imageamento Tridimensional/métodos
2.
Sci Rep ; 14(1): 5033, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424155

RESUMO

Quantifying healthy and degraded inner tissues in plants is of great interest in agronomy, for example, to assess plant health and quality and monitor physiological traits or diseases. However, detecting functional and degraded plant tissues in-vivo without harming the plant is extremely challenging. New solutions are needed in ligneous and perennial species, for which the sustainability of plantations is crucial. To tackle this challenge, we developed a novel approach based on multimodal 3D imaging and artificial intelligence-based image processing that allowed a non-destructive diagnosis of inner tissues in living plants. The method was successfully applied to the grapevine (Vitis vinifera L.). Vineyard's sustainability is threatened by trunk diseases, while the sanitary status of vines cannot be ascertained without injuring the plants. By combining MRI and X-ray CT 3D imaging with an automatic voxel classification, we could discriminate intact, degraded, and white rot tissues with a mean global accuracy of over 91%. Each imaging modality contribution to tissue detection was evaluated, and we identified quantitative structural and physiological markers characterizing wood degradation steps. The combined study of inner tissue distribution versus external foliar symptom history demonstrated that white rot and intact tissue contents are key-measurements in evaluating vines' sanitary status. We finally proposed a model for an accurate trunk disease diagnosis in grapevine. This work opens new routes for precision agriculture and in-situ monitoring of tissue quality and plant health across plant species.


Assuntos
Inteligência Artificial , Vitis , Imageamento Tridimensional , Fluxo de Trabalho , Doenças das Plantas , Aprendizado de Máquina
3.
Bioinformatics ; 37(10): 1482-1484, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32997734

RESUMO

SUMMARY: The increasing interest of animal and plant research communities for biomedical 3D imaging devices results in the emergence of new topics. The anatomy, structure and function of tissues can be observed non-destructively in time-lapse multimodal imaging experiments by combining the outputs of imaging devices such as X-ray CT and MRI scans. However, living samples cannot remain in these devices for a long period. Manual positioning and natural growth of the living samples induce variations in the shape, position and orientation in the acquired images that require a preprocessing step of 3D registration prior to analyses. This registration step becomes more complex when combining observations from devices that highlight various tissue structures. Identifying image invariants over modalities is challenging and can result in intractable problems. Fijiyama, a Fiji plugin built upon biomedical registration algorithms, is aimed at non-specialists to facilitate automatic alignment of 3D images acquired either at successive times and/or with different imaging systems. Its versatility was assessed on four case studies combining multimodal and time series data, spanning from micro to macro scales. AVAILABILITY AND IMPLEMENTATION: Fijiyama is an open source software (GPL license) implemented in Java. The plugin is available through the official Fiji release. An extensive documentation is available at the official page: https://imagej.github.io/Fijiyama. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Software , Animais , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Imagem com Lapso de Tempo
4.
J Fungi (Basel) ; 3(2)2017 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-29371539

RESUMO

Eutypa lata is a fungal pathogen causing severe dieback in vineyards worldwide. This fungus colonizes vines through pruning wounds, eventually causing a brown sectorial necrosis in wood as well as stunted vegetative growth. Several years may pass between infection and the expression of external symptoms, hindering the rapid evaluation of both grapevine cultivars susceptibility and E. lata variation in aggressiveness. We aimed to develop a rapid quantitative method for the assessment of wood colonization after inoculation of cuttings in controlled conditions. We used several grape cultivars varying in susceptibility in the vineyard and fungal isolates with different levels of aggressiveness to monitor wood colonization during a maximum period of 2 months. Re-isolation allowed demonstration of the effects of both cultivars and fungal isolates on the rate of wood colonization. We also developed a real-time PCR method that was efficient in measuring fungal biomass, which was found to be correlated with isolate aggressiveness based on foliar symptom severity. The real-time PCR approach appears to be a useful technology to evaluate grapevine susceptibility to E. lata, and could be adapted to other pathogens associated with grapevine trunk diseases.

5.
Theor Appl Genet ; 127(5): 1223-35, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24590356

RESUMO

KEY MESSAGE: Combining several different approaches, we have examined the structure, variability, and distribution of Tvv1 retrotransposons. Tvv1 is an unusual example of a low-copy retrotransposon metapopulation dispersed unevenly among very distant species and is promising for the development of molecular markers. Retrotransposons are ubiquitous throughout the genomes of the vascular plants, but individual retrotransposon families tend to be confined to the level of plant genus or at most family. This restricts the general applicability of a family as molecular markers. Here, we characterize a new plant retrotransposon named Tvv1_Sdem, a member of the Copia superfamily of LTR retrotransposons, from the genome of the wild potato Solanum demissum. Comparative analyses based on structure and sequence showed a high level of similarity of Tvv1_Sdem with Tvv1-VB, a retrotransposon previously described in the grapevine genome Vitis vinifera. Extending the analysis to other species by in silico and in vitro approaches revealed the presence of Tvv1 family members in potato, tomato, and poplar genomes, and led to the identification of full-length copies of Tvv1 in these species. We were also able to identify polymorphism in UTL sequences between Tvv1_Sdem copies from wild and cultivated potatoes that are useful as molecular markers. Combining different approaches, our results suggest that the Tvv1 family of retrotransposons has a monophyletic origin and has been maintained in both the rosids and the asterids, the major clades of dicotyledonous plants, since their divergence about 100 MYA. To our knowledge, Tvv1 represents an unusual plant retrotransposon metapopulation comprising highly similar members disjointedly dispersed among very distant species. The twin features of Tvv1 presence in evolutionarily distant genomes and the diversity of its UTL region in each species make it useful as a source of robust molecular markers for diversity studies and breeding.


Assuntos
Genoma de Planta , Retroelementos/genética , Solanum/genética , Vitis/genética , Sequência Conservada , Dosagem de Genes , Medicago truncatula/genética , Oryza/genética , Filogenia , Análise de Sequência de DNA , Zea mays/genética
6.
New Phytol ; 200(4): 1000-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24033286

RESUMO

The BARE retrotransposon comprises c. 10% of the barley (Hordeum vulgare) genome. It is actively transcribed, translated and forms virus-like particles (VLPs). For retrotransposons, the inheritance of new copies depends critically on where in the plant replication occurs. In order to shed light on the replication strategy of BARE in the plant, we have used immunolocalization and in situ hybridization to examine expression of the BARE capsid protein, Gag, at a tissue-specific level. Gag is expressed in provascular tissues and highly localized in companion cells surrounding the phloem sieve tubes in mature vascular tissues. BARE Gag and RNA was not seen in the shoot apical meristem of young seedlings, but appeared, following transition to flowering, in the developing floral spike. Moreover, Gag has a highly specific localization in pre-fertilization ovaries. The strong presence of Gag in the floral meristems suggests that newly replicated copies there will be passed to the next generation. BARE expression patterns are consistent with transcriptional regulation by predicted response elements in the BARE promoter, and in the ovary with release from epigenetic transcriptional silencing. To our knowledge, this is the first analysis of the expression of native retrotransposon proteins within a plant to be reported.


Assuntos
Regulação da Expressão Gênica de Plantas , Hordeum/genética , Especificidade de Órgãos/genética , Retroelementos/genética , Proteínas do Capsídeo/metabolismo , Secas , Produtos do Gene gag/genética , Produtos do Gene gag/metabolismo , Immunoblotting , Meristema/genética , Dados de Sequência Molecular , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Feixe Vascular de Plantas/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Sementes/genética
7.
BMC Genomics ; 9: 469, 2008 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-18842156

RESUMO

BACKGROUND: Retrotransposons make a significant contribution to the size, organization and genetic diversity of their host genomes. To characterize retrotransposon families in the grapevine genome (the fourth crop plant genome sequenced) we have combined two approaches: a PCR-based method for the isolation of RnaseH-LTR sequences with a computer-based sequence similarity search in the whole-genome sequence of PN40024. RESULTS: Supported by a phylogenic analysis, ten novel Ty1/copia families were distinguished in this study. To select a canonical reference element sequence from amongst the various insertions in the genome belonging to each retroelement family, the following screening criteria were adopted to identify the element sequence with: (1) perfect 5 bp-duplication of target sites, (2) the highest level of identity between 5' and 3'-LTR within a single insertion sequence, and (3) longest, un-interrupted coding capacity within the gag-pol ORF. One to eight copies encoding a single putatively functional gag-pol polyprotein were found for three families, indicating that these families could be still autonomous and active. For the others, no autonomous copies were identified. However, a subset of copies within the presumably non-autonomous families had perfect identity between their 5' and 3' LTRs, indicating a recent insertion event. A phylogenic study based on the sequence alignment of the region located between reverse transcriptase domains I and VII distinguished these 10 families from other plant retrotransposons. Including the previously characterized Ty1/copia-like grapevine retrotransposons Tvv1 and Vine 1 and the Ty3/gypsy-like Gret1 in this assessment, a total of 1709 copies were identified for the 13 retrotransposon families, representing 1.24% of the sequenced genome. The copy number per family ranged from 91-212 copies. We performed insertion site profiling for 8 out of the 13 retrotransposon families and confirmed multiple insertions of these elements across the Vitis genus. Insertional polymorphism analysis and dating of full-length copies based on their LTR divergence demonstrated that each family has a particular amplification history, with 71% of the identified copies being inserted within the last 2 million years. CONCLUSION: The strategy we used efficiently delivered new Ty1/copia-like retrotransposon sequences, increasing the total number of characterized grapevine retrotrotransposons from 3 to 13. We provide insights into the representation and dynamics of the 13 families in the genome. Our data demonstrated that each family has a particular amplification pattern, with 7 families having copies recently inserted within the last 0.2 million year. Among those 7 families with recent insertions, three retain the capacity for activity in the grape genome today.


Assuntos
Genoma de Planta , Retroelementos , Vitis/genética , DNA de Plantas/genética , DNA de Plantas/metabolismo , Filogenia
8.
Theor Appl Genet ; 116(5): 671-82, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18193403

RESUMO

Structural variability of Tvv1, a grapevine retrotransposon Ty1 copia-like family, was investigated within the grape genome and the canonical sequence of Tvv1 determined. Then, two remarkable elements, Tvv1-Delta3001 and Tvv1-Delta3640, which had suffered large deletions 3,001 bp and 3,460 bp in length of their coding sequences were compared to the canonical copy. In both deleted elements, the deletion breakpoint was characterized by a stretch 13 bp-long in Tvv1-Delta3001 and 11 bp-long in Tvv1-Delta3640 found duplicated in the canonical copy at each bound of the deleted regions. Tvv1-Delta3001 and Tvv1-Delta3460 were both shown to be unique copies fixed at a single locus in the grapevine genome. Their presence was very variable in a set of 58 varieties and wild vines. These elements have most likely been dispersed through natural intermixing after their initial insertion whose chronology was estimated. The model that we propose to explain the structure of Tvv1-Delta3001 and Tvv1-Delta3640, implies illegitimate recombination involving template switching between two RNA molecules co-packaged in the VLP prior to the integration of the deleted daughter copy into the host genome.


Assuntos
Variação Genética , Recombinação Genética/genética , Retroelementos/genética , Vitis/genética , Agricultura , Sequência de Aminoácidos , Sequência de Bases , Segregação de Cromossomos/genética , Genoma de Planta/genética , Dados de Sequência Molecular , Análise de Sequência de DNA , Deleção de Sequência , Sequências Repetidas Terminais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA