Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fitoterapia ; 175: 105937, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38565381

RESUMO

Misuse of synthetic pesticides and antimicrobials in agriculture and the food industry has resulted in food contamination, promoting resistant pests and pathogen strains and hazards for humanity and the environment. Therefore, ever-increasing concern about synthetic chemicals has stimulated interest in eco-friendly compounds. Ferulago angulata (Schltdl.) Boiss. and Ferula assa-foetida L., as medicinal species with restricted natural distribution and unknown biological potential, aimed at investigation of their essential oil (EO) biological properties, were subjected. Z-ß-Ocimene and Z-1-Propenyl-sec-butyl disulfide molecules were identified as the major composition of the essential oil of the fruits of F. angulata and F. assa-foetida, respectively. In vitro antimicrobial activity and membrane destruction investigation by scanning electron microscopy imaging illustrated that F. angulata EO had potent antibacterial activity. Besides, the EOs of both plants exhibited significant anti-yeast activity against Candida albicans. In relation to insecticidal activity, both EOs indicated appropriate potential against Ephestia kuehniella; however, the F. assa-foetida EO had more toxicity on the studied pest. Among several insecticidal-related targets, acetylcholinesterase was identified as the main target of EO based on the molecular docking approach. Hence, in line with in vitro results, in silico evaluation determined that F. assa-foetida has a higher potential for inhibiting acetylcholinesterase and, consequently, better insecticide properties. Overall, in addition to the antioxidant properties of both EO, F. angulata EO could serve as an effective prevention against microbial spoilage and foodborne pathogens, and F. assa-foetida EO holds promise as a multi-purpose and natural biocide for yeast contamination and pest management particularly against E. kuehniella.


Assuntos
Ferula , Inseticidas , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Ferula/química , Inseticidas/farmacologia , Inseticidas/isolamento & purificação , Inseticidas/química , Animais , Candida albicans/efeitos dos fármacos , Frutas/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/isolamento & purificação , Simulação de Acoplamento Molecular , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Óleos de Plantas/isolamento & purificação , Simulação por Computador , Antifúngicos/farmacologia , Antifúngicos/isolamento & purificação , Antifúngicos/química
2.
Pestic Biochem Physiol ; 195: 105544, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666615

RESUMO

The rice weevil, Sitophilus oryzae L., is one of the most widespread and destructive stored-product pests and resistant to a wide range of chemical insecticides. In this research, Artemisia annua L. essential oil (EO) and its encapsulated form by chitosan/TPP (tripolyphosphate) and zeolite were tested against S. oryzae adults. The order of toxicity was chitosan/TPP (LC30: 30.83, LC50: 39.52, and LC90: 72.50 µL/L air) > pure EO (LC30: 35.75, LC50: 46.25, and LC90: 86.76 µL/L air) > EO loaded in the zeolite (LC30: 43.35, LC50: 55.07, and LC90: 98.80 µL/L air). These encapsulated samples were characterized by dynamic light scattering (DLS) and field emission scanning electron microscope (FE-SEM) which revealed the size and morphology of the droplets measuring 255.2 to 272 nm and 245 to 271.8 nm for EO loaded in chitosan and zeolite respectively. The encapsulation efficiency and loading percentages of A. annua EO in chitosan/TPP and zeolite were 40.16% and 6.01%, and 88% and 85%, respectively. Fumigant persistence was increased from 6 days for pure EO then, 20 and 22 days for encapsulated oil in zeolite and chitosan/TPP, respectively. Our results showed that A. annua EO contains (±)-camphor (29.29%), 1,8-cineole (12.56%), ß-caryophyllene (10.29%), α-pinene (8.68%), and artemisia ketone (8.48%) as its major composition. The activity level of glutathione S-transferase increased while general esterase and acetylcholinesterase activity were significantly inhibited in the treated group compared with the control. Antioxidant enzymes, including catalase, peroxidase, and superoxide dismutase were activated in treated adults compared to controls. The current results suggest that encapsulation of A. annua EO by chitosan/TPP and zeolite in addition to safety and environmentally friendly approach could increase its sustainability and therefore enhancing the efficiency in controlling S. oryzae in storage.


Assuntos
Artemisia annua , Quitosana , Óleos Voláteis , Zeolitas , Acetilcolinesterase
3.
Pestic Biochem Physiol ; 184: 105124, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715062

RESUMO

The fall webworm, Hyphantria cunea (Drury), is a harmful polyphagous global defoliator. The major chemical components of Artemisia annua essential oil (EO) was found to contain (±)-camphor (16.42%), 1,8-cineole (6.22%), α-pinene (6%), caryophyllene (5.19%), and α-selinene (5.17%). The highest toxicity was recorded for EO of A. annua (LD50 = 305.05 µg/larva), followed by (±)-camphor (LD50 = 465.03 µg/larva) and 1,8-cineole (LD50 = 573.49 µg/larva). The binary mixtures of compounds expressed a weaker activity compared to individuals. The (±)-camphor was found to be antagonistic to 1,8-cineole. The biochemical compounds of treated larvae were also determined. The activity level of alanin and aspartate aminotransferase decreased sharply while acid and alkaline phosphatase increased. Activity of lactate dehydrogenase was significantly higher than the control group at 24 h, but decreased significantly after 48 h in all treatments. The activity of esterases were decreased in the treated larvae. The glutathione S-transferase significantly increased in all time intervals. Overall the current results suggest that the sweet wormwood (A. annua) EO and its components could be a safe and environmentally friendly approach in possible control of fall webworm (H. cunea).


Assuntos
Artemisia annua , Mariposas , Óleos Voláteis , Animais , Artemisia annua/química , Cânfora , Eucaliptol , Larva , Óleos Voláteis/química , Óleos Voláteis/toxicidade
4.
Pestic Biochem Physiol ; 185: 105135, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35772838

RESUMO

Plant secondary metabolites are currently known to interfere with basic metabolic, behavioral and physiological processes of insects. In the current study, the biological and physiological effects of trans-anethole were investigated against Hyphantria cunea Drury. The bioassay data demonstrated the high toxicity of trans-anethole against the fourth-instar larvae with the LC30, LC50 and LC90 values of 0.72, 1.41 and 7.20 µL/mL, respectively. Also the concentrations of LC30 and LC50 showed 53 and 87% feeding deterrency against the larvae. The biochemical experiments revealed that oral exposure of trans-anethole decreased the activities of digestive enzymes, acetylcholinesterase and the contents of energy reserves while, it induced the activities of detoxifying and antioxidant enzymes compared to control. In fact, trans-anethole induced the inhibition of digestion and AChE activities accompanied by imbalance in metabolic and oxidative processes so it may be recommended as a potent biopesticide in control of H. cunea populations.


Assuntos
Derivados de Alilbenzenos , Mariposas , Acetilcolinesterase/metabolismo , Animais , Anisóis , Larva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...