Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Opin Struct Biol ; 71: 259-273, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34592682

RESUMO

Accurate predictions from models based on physical principles are the ultimate metric of our biophysical understanding. Although there has been stunning progress toward structure prediction, quantitative prediction of enzyme function has remained challenging. Realizing this goal will require large numbers of quantitative measurements of rate and binding constants and the use of these ground-truth data sets to guide the development and testing of these quantitative models. Ground truth data more closely linked to the underlying physical forces are also desired. Here, we describe technological advances that enable both types of ground truth measurements. These advances allow classic models to be tested, provide novel mechanistic insights, and place us on the path toward a predictive understanding of enzyme structure and function.


Assuntos
Genômica , Fenômenos Biofísicos , Biofísica
2.
Science ; 373(6553)2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34437092

RESUMO

Systematic and extensive investigation of enzymes is needed to understand their extraordinary efficiency and meet current challenges in medicine and engineering. We present HT-MEK (High-Throughput Microfluidic Enzyme Kinetics), a microfluidic platform for high-throughput expression, purification, and characterization of more than 1500 enzyme variants per experiment. For 1036 mutants of the alkaline phosphatase PafA (phosphate-irrepressible alkaline phosphatase of Flavobacterium), we performed more than 670,000 reactions and determined more than 5000 kinetic and physical constants for multiple substrates and inhibitors. We uncovered extensive kinetic partitioning to a misfolded state and isolated catalytic effects, revealing spatially contiguous regions of residues linked to particular aspects of function. Regions included active-site proximal residues but extended to the enzyme surface, providing a map of underlying architecture not possible to derive from existing approaches. HT-MEK has applications that range from understanding molecular mechanisms to medicine, engineering, and design.


Assuntos
Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/antagonistas & inibidores , Fosfatase Alcalina/química , Biocatálise , Domínio Catalítico , Flavobacterium/enzimologia , Hidrólise , Cinética , Microfluídica , Modelos Moleculares , Mutação , Oxigênio/metabolismo , Fosfatos/metabolismo , Conformação Proteica , Dobramento de Proteína , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA