Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-11554309

RESUMO

Cells have evolved distinct mechanisms for both preventing and removing mutagenic and lethal DNA damage. Structural and biochemical characterization of key enzymes that function in DNA repair pathways are illuminating the biological and chemical mechanisms that govern initial lesion detection, recognition, and excision repair of damaged DNA. These results are beginning to reveal a higher level of DNA repair coordination that ensures the faithful repair of damaged DNA. Enzyme-induced DNA distortions allow for the specific recognition of distinct extrahelical lesions, as well as tight binding to cleaved products, which has implications for the ordered transfer of unstable DNA repair intermediates between enzymes during base excision repair.


Assuntos
Dano ao DNA , DNA Glicosilases , DNA Ligases/fisiologia , Reparo do DNA , Guanina/análogos & derivados , Alquilação , Animais , Carbono-Oxigênio Liases/química , Carbono-Oxigênio Liases/fisiologia , DNA/química , DNA/genética , DNA Ligases/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Desoxirribonuclease IV (Fago T4-Induzido) , Endodesoxirribonucleases/fisiologia , Endonucleases Flap , Guanina/metabolismo , Humanos , Modelos Moleculares , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/fisiologia , Ligação Proteica , Conformação Proteica , Pirofosfatases/química , Pirofosfatases/fisiologia , Uracila-DNA Glicosidase
2.
Mutat Res ; 460(3-4): 211-29, 2000 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-10946230

RESUMO

DNA damage occurs unceasingly in all cells. Spontaneous DNA base loss, as well as the removal of damaged DNA bases by specific enzymes targeted to distinct base lesions, creates non-coding and lethal apurinic/apyrimidinic (AP) sites. AP sites are the central intermediate in DNA base excision repair (BER) and must be processed by 5' AP endonucleases. These pivotal enzymes detect, recognize, and cleave the DNA phosphodiester backbone 5' of, AP sites to create a free 3'-OH end for DNA polymerase repair synthesis. In humans, AP sites are processed by APE1, whereas in yeast the primary AP endonuclease is termed APN1, and these enzymes are the major constitutively expressed AP endonucleases in these organisms and are homologous to the Escherichia coli enzymes Exonuclease III (Exo III) and Endonuclease IV (Endo IV), respectively. These enzymes represent both of the conserved 5' AP endonuclease enzyme families that exist in biology. Crystal structures of APE1 and Endo IV, both bound to AP site-containing DNA reveal how abasic sites are recognized and the DNA phosphodiester backbone cleaved by these two structurally unrelated enzymes with distinct chemical mechanisms. Both enzymes orient the AP-DNA via positively charged complementary surfaces and insert loops into the DNA base stack, bending and kinking the DNA to promote flipping of the AP site into a sequestered enzyme pocket that excludes undamaged nucleotides. Each enzyme-DNA complex exhibits distinctly different DNA conformations, which may impact upon the biological functions of each enzyme within BER signal-transduction pathways.


Assuntos
Ácido Apurínico/química , Carbono-Oxigênio Liases/química , Dano ao DNA , Reparo do DNA , Proteínas de Escherichia coli , Polinucleotídeos/química , Ácido Apurínico/metabolismo , Sítios de Ligação , Carbono-Oxigênio Liases/fisiologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Desoxirribonuclease IV (Fago T4-Induzido) , Escherichia coli/enzimologia , Exodesoxirribonucleases/química , Exodesoxirribonucleases/fisiologia , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Polinucleotídeos/metabolismo , Conformação Proteica , Dobramento de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
3.
EMBO J ; 19(7): 1719-30, 2000 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-10747039

RESUMO

Human O(6)-alkylguanine-DNA alkyltransferase (AGT), which directly reverses endogenous alkylation at the O(6)-position of guanine, confers resistance to alkylation chemotherapies and is therefore an active anticancer drug target. Crystal structures of active human AGT and its biologically and therapeutically relevant methylated and benzylated product complexes reveal an unexpected zinc-stabilized helical bridge joining a two-domain alpha/beta structure. An asparagine hinge couples the active site motif to a helix-turn-helix (HTH) motif implicated in DNA binding. The reactive cysteine environment, its position within a groove adjacent to the alkyl-binding cavity and mutational analyses characterize DNA-damage recognition and inhibitor specificity, support a structure-based dealkylation mechanism and suggest a molecular basis for destabilization of the alkylated protein. These results support damaged nucleotide flipping facilitated by an arginine finger within the HTH motif to stabilize the extrahelical O(6)-alkylguanine without the protein conformational change originally proposed from the empty Ada structure. Cysteine alkylation sterically shifts the HTH recognition helix to evidently mechanistically couple release of repaired DNA to an opening of the protein fold to promote the biological turnover of the alkylated protein.


Assuntos
O(6)-Metilguanina-DNA Metiltransferase/química , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Alquilação , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Domínio Catalítico/genética , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Sequências Hélice-Alça-Hélice , Humanos , Técnicas In Vitro , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , O(6)-Metilguanina-DNA Metiltransferase/genética , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Zinco/química
4.
Nature ; 403(6768): 451-6, 2000 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-10667800

RESUMO

Non-coding apurinic/apyrimidinic (AP) sites in DNA are continually created in cells both spontaneously and by damage-specific DNA glycosylases. The biologically critical human base excision repair enzyme APE1 cleaves the DNA sugar-phosphate backbone at a position 5' of AP sites to prime DNA repair synthesis. Here we report three co-crystal structures of human APE1 bound to abasic DNA which show that APE1 uses a rigid, pre-formed, positively charged surface to kink the DNA helix and engulf the AP-DNA strand. APE1 inserts loops into both the DNA major and minor grooves and binds a flipped-out AP site in a pocket that excludes DNA bases and racemized beta-anomer AP sites. Both the APE1 active-site geometry and a complex with cleaved AP-DNA and Mn2+ support a testable structure-based catalytic mechanism. Alanine substitutions of the residues that penetrate the DNA helix unexpectedly show that human APE1 is structurally optimized to retain the cleaved DNA product. These structural and mutational results show how APE1 probably displaces bound glycosylases and retains the nicked DNA product, suggesting that APE1 acts in vivo to coordinate the orderly transfer of unstable DNA damage intermediates between the excision and synthesis steps of DNA repair.


Assuntos
Aminopeptidases/química , Reparo do DNA , DNA/química , Proteínas de Saccharomyces cerevisiae , Aminopeptidases/genética , Aminopeptidases/metabolismo , Cristalografia por Raios X , DNA/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato
5.
Artigo em Inglês | MEDLINE | ID: mdl-10410797

RESUMO

Recent structural and biochemical studies have begun to illuminate how cells solve the problems of recognizing and removing damaged DNA bases. Bases damaged by environmental, chemical, or enzymatic mechanisms must be efficiently found within a large excess of undamaged DNA. Structural studies suggest that a rapid damage-scanning mechanism probes for both conformational deviations and local deformability of the DNA base stack. At susceptible lesions, enzyme-induced conformational changes lead to direct interactions with specific damaged bases. The diverse array of damaged DNA bases are processed through a two-stage pathway in which damage-specific enzymes recognize and remove the base lesion, creating a common abasic site intermediate that is processed by damage-general repair enzymes to restore the correct DNA sequence.


Assuntos
Dano ao DNA , DNA Glicosilases , Reparo do DNA , DNA/genética , DNA/metabolismo , Animais , Pareamento Incorreto de Bases , DNA/química , Humanos , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/metabolismo , Conformação de Ácido Nucleico , Conformação Proteica , Raios Ultravioleta , Uracila-DNA Glicosidase
6.
J Mol Biol ; 287(2): 331-46, 1999 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-10080896

RESUMO

Uracil-DNA glycosylase (UDG), which is a critical enzyme in DNA base-excision repair that recognizes and removes uracil from DNA, is specifically and irreversably inhibited by the thermostable uracil-DNA glycosylase inhibitor protein (Ugi). A paradox for the highly specific Ugi inhibition of UDG is how Ugi can successfully mimic DNA backbone interactions for UDG without resulting in significant cross-reactivity with numerous other enzymes that possess DNA backbone binding affinity. High-resolution X-ray crystal structures of Ugi both free and in complex with wild-type and the functionally defective His187Asp mutant Escherichia coli UDGs reveal the detailed molecular basis for duplex DNA backbone mimicry by Ugi. The overall shape and charge distribution of Ugi most closely resembles a midpoint in a trajectory between B-form DNA and the kinked DNA observed in UDG:DNA product complexes. Thus, Ugi targets the mechanism of uracil flipping by UDG and appears to be a transition-state mimic for UDG-flipping of uracil nucleotides from DNA. Essentially all the exquisite shape, electrostatic and hydrophobic complementarity for the high-affinity UDG-Ugi interaction is pre-existing, except for a key flip of the Ugi Gln19 carbonyl group and Glu20 side-chain, which is triggered by the formation of the complex. Conformational changes between unbound Ugi and Ugi complexed with UDG involve the beta-zipper structural motif, which we have named for the reversible pairing observed between intramolecular beta-strands. A similar beta-zipper is observed in the conversion between the open and closed forms of UDG. The combination of extremely high levels of pre-existing structural complementarity to DNA binding features specific to UDG with key local conformational changes in Ugi resolves the UDG-Ugi paradox and suggests a potentially general structural solution to the formation of very high affinity DNA enzyme-inhibitor complexes that avoid cross- reactivity.


Assuntos
DNA Glicosilases , Escherichia coli/enzimologia , N-Glicosil Hidrolases/química , Proteínas Virais/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Inibidores Enzimáticos/química , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Mutação , N-Glicosil Hidrolases/genética , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Alinhamento de Sequência , Uracila-DNA Glicosidase
7.
Curr Opin Struct Biol ; 9(1): 37-47, 1999 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10047578

RESUMO

Recent breakthroughs integrate individual DNA repair enzyme structures, biochemistry and biology to outline the structural cell biology of the DNA base excision repair pathways that are essential to genome integrity. Thus, we are starting to envision how the actions, movements, steps, partners and timing of DNA repair enzymes, which together define their molecular choreography, are elegantly controlled by both the nature of the DNA damage and the structural chemistry of the participating enzymes and the DNA double helix.


Assuntos
DNA Glicosilases , DNA Ligases/química , DNA Ligases/metabolismo , Reparo do DNA/fisiologia , Timina DNA Glicosilase , Pareamento Incorreto de Bases , Carbono-Oxigênio Liases/química , Carbono-Oxigênio Liases/metabolismo , DNA Polimerase beta/química , DNA Polimerase beta/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Desoxirribonuclease IV (Fago T4-Induzido) , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Endonucleases Flap , Humanos , Modelos Moleculares , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/metabolismo , Conformação Proteica , Uracila-DNA Glicosidase
8.
Nat Struct Biol ; 5(12): 1058-64, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9846876

RESUMO

The DNA glycosylase MutY, which is a member of the Helix-hairpin-Helix (HhH) DNA glycosylase superfamily, excises adenine from mispairs with 8-oxoguanine and guanine. High-resolution crystal structures of the MutY catalytic core (cMutY), the complex with bound adenine, and designed mutants reveal the basis for adenine specificity and glycosyl bond cleavage chemistry. The two cMutY helical domains form a positively-charged groove with the adenine-specific pocket at their interface. The Watson-Crick hydrogen bond partners of the bound adenine are substituted by protein atoms, confirming a nucleotide flipping mechanism, and supporting a specific DNA binding orientation by MutY and structurally related DNA glycosylases.


Assuntos
Adenina/metabolismo , Reparo do DNA , N-Glicosil Hidrolases/metabolismo , Sequência de Aminoácidos , Pareamento Incorreto de Bases , Domínio Catalítico/genética , Cristalografia por Raios X , DNA/metabolismo , DNA Glicosilases , Guanina/análogos & derivados , Guanina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/genética , Conformação Proteica , Especificidade por Substrato
9.
Cell ; 95(1): 135-46, 1998 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-9778254

RESUMO

Flap endonuclease (FEN-1) removes 5' overhanging flaps in DNA repair and processes the 5' ends of Okazaki fragments in lagging strand DNA synthesis. The crystal structure of Pyrococcus furiosus FEN-1, active-site metal ions, and mutational information indicate interactions for the single- and double-stranded portions of the flap DNA substrate and identify an unusual DNA-binding motif. The enzyme's active-site structure suggests that DNA binding induces FEN-1 to clamp onto the cleavage junction to form the productive complex. The conserved FEN-1 C terminus binds proliferating cell nuclear antigen (PCNA) and positions FEN-1 to act primarily as an exonuclease in DNA replication, in contrast to its endonuclease activity in DNA repair. FEN-1 mutations altering PCNA binding should reduce activity during replication, likely causing DNA repeat expansions as seen in some cancers and genetic diseases.


Assuntos
Reparo do DNA , Replicação do DNA , Endodesoxirribonucleases/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Catálise , DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Endonucleases/química , Endonucleases/metabolismo , Exodesoxirribonuclease V , Exodesoxirribonucleases/química , Exonucleases/química , Exonucleases/metabolismo , Endonucleases Flap , Íons , Magnésio , Dados de Sequência Molecular , Conformação Proteica , Pyrococcus furiosus/enzimologia
10.
EMBO J ; 17(17): 5214-26, 1998 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-9724657

RESUMO

Three high-resolution crystal structures of DNA complexes with wild-type and mutant human uracil-DNA glycosylase (UDG), coupled kinetic characterizations and comparisons with the refined unbound UDG structure help resolve fundamental issues in the initiation of DNA base excision repair (BER): damage detection, nucleotide flipping versus extrahelical nucleotide capture, avoidance of apurinic/apyrimidinic (AP) site toxicity and coupling of damage-specific and damage-general BER steps. Structural and kinetic results suggest that UDG binds, kinks and compresses the DNA backbone with a 'Ser-Pro pinch' and scans the minor groove for damage. Concerted shifts in UDG simultaneously form the catalytically competent active site and induce further compression and kinking of the double-stranded DNA backbone only at uracil and AP sites, where these nucleotides can flip at the phosphate-sugar junction into a complementary specificity pocket. Unexpectedly, UDG binds to AP sites more tightly and more rapidly than to uracil-containing DNA, and thus may protect cells sterically from AP site toxicity. Furthermore, AP-endonuclease, which catalyzes the first damage-general step of BER, enhances UDG activity, most likely by inducing UDG release via shared minor groove contacts and flipped AP site binding. Thus, AP site binding may couple damage-specific and damage-general steps of BER without requiring direct protein-protein interactions.


Assuntos
DNA Glicosilases , Reparo do DNA , DNA/química , N-Glicosil Hidrolases/química , Oligodesoxirribonucleotídeos/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , DNA/metabolismo , Humanos , Modelos Genéticos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo , Conformação de Ácido Nucleico , Oligodesoxirribonucleotídeos/metabolismo , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Uracila-DNA Glicosidase
11.
EMBO J ; 16(21): 6548-58, 1997 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-9351835

RESUMO

The structure of the major human apurinic/ apyrimidinic endonuclease (HAP1) has been solved at 2.2 A resolution. The enzyme consists of two symmetrically related domains of similar topology and has significant structural similarity to both bovine DNase I and its Escherichia coli homologue exonuclease III (EXOIII). A structural comparison of these enzymes reveals three loop regions specific to HAP1 and EXOIII. These loop regions apparently act in DNA abasic site (AP) recognition and cleavage since DNase I, which lacks these loops, correspondingly lacks AP site specificity. The HAP1 structure furthermore suggests a mechanism for AP site binding which involves the recognition of the deoxyribose moiety in an extrahelical conformation, rather than a 'flipped-out' base opposite the AP site.


Assuntos
Carbono-Oxigênio Liases , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Endonucleases/química , Proteínas Nucleares/química , Conformação Proteica , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Sítios de Ligação , Bovinos , Cristalografia por Raios X , DNA/metabolismo , Reparo do DNA , Desoxirribonuclease I/química , Escherichia coli/química , Exodesoxirribonucleases/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Ligação Proteica , Proteínas Recombinantes de Fusão/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
12.
Structure ; 5(12): 1543-50, 1997 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-9438868

RESUMO

DNA base excision repair (BER) is essential to preserving the integrity of the genome. Recent crystallographic studies of representatives from each enzyme class required for BER reveal clues to the structural basis of an entire DNA repair pathway.


Assuntos
Reparo do DNA , Enzimas/química , Enzimas/genética , Animais , Composição de Bases , Cristalografia por Raios X , Enzimas/metabolismo , Humanos , Modelos Moleculares , Família Multigênica , Relação Estrutura-Atividade
13.
Nature ; 384(6604): 87-92, 1996 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-8900285

RESUMO

Any uracil bases in DNA, a result of either misincorporation or deamination of cytosine, are removed by uracil-DNA glycosylase (UDG), one of the most efficient and specific of the base-excision DNA-repair enzymes. Crystal structures of human and viral UDGs complexed with free uracil have indicated that the enzyme binds an extrahelical uracil. Such binding of undamaged extrahelical bases has been seen in the structures of two bacterial methyltransferases and bacteriophage T4 endonuclease V. Here we characterize the DNA binding and kinetics of several engineered human UDG mutants and present the crystal structure of one of these, which to our knowledge represents the first structure of any eukaryotic DNA repair enzyme in complex with its damaged, target DNA. Electrostatic orientation along the UDG active site, insertion of an amino acid (residue 272) into the DNA through the minor groove, and compression of the DNA backbone flanking the uracil all result in the flipping-out of the damaged base from the DNA major groove, allowing specific recognition of its phosphate, deoxyribose and uracil moieties. Our structure thus provides a view of a productive complex specific for cleavage of uracil from DNA and also reveals the basis for the enzyme-assisted nucleotide flipping by this critical DNA-repair enzyme.


Assuntos
DNA Glicosilases , Reparo do DNA , DNA/metabolismo , N-Glicosil Hidrolases/metabolismo , Conformação de Ácido Nucleico , Conformação Proteica , Uracila/metabolismo , Cristalografia por Raios X , DNA/química , DNA/genética , Eletroquímica , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/genética , Ligação Proteica , Relação Estrutura-Atividade , Uracila/química , Uracila-DNA Glicosidase
14.
Structure ; 4(9): 1077-92, 1996 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-8805593

RESUMO

BACKGROUND: The essential enzyme dUTP pyrophosphatase (dUTPase) is exquisitely specific for dUTP and is critical for the fidelity of DNA replication and repair. dUTPase hydrolyzes dUTP to dUMP and pyrophosphate, simultaneously reducing dUTP levels and providing the dUMP for dTTP biosynthesis. A high cellular dTTP: dUTP ratio is essential to avoid uracil incorporation into DNA, which would lead to strand breaks and cell death. We report the first detailed atomic-resolution structure of a eukaryotic dUTPase, human dUTPase, and complexes with the uracil-containing deoxyribonucleotides, dUMP, dUDP and dUTP. RESULTS: The crystal structure reveals that each subunit of the dUTPase trimer folds into an eight-stranded jelly-roll beta barrel, with the C-terminal beta strands interchanged among the subunits. The structure is similar to that of the E. coli enzyme, despite low sequence homology between the two enzymes. The nucleotide complexes reveal a simple and elegant way for a beta hairpin to recognize specific nucleic acids: uracil is inserted into a distorted antiparallel beta hairpin and hydrogen bonds entirely to main-chain atoms. This interaction mimics DNA base pairing, selecting uracil over cytosine and sterically precluding thymine and ribose binding. Residues from the second subunit interact with the phosphate groups and a glycine-rich C-terminal tail of the third subunit caps the substrate-bound active site, causing total complementary enclosure of substrate. To our knowledge, this is the first documented instance of all three subunits of a trimeric enzyme supplying residues that are critical to enzyme function and catalysis. CONCLUSIONS: The dUTPase nucleotide-binding sites incorporate some features of other nucleotide-binding proteins and protein kinases, but seem distinct in sequence and architecture. The novel nucleic acid base recognition motif appears ancient; higher order structures, such as the ribosome, may have evolved from a motif of this kind. These uracil-beta-hairpin interactions are an obvious way for peptides to become early coenzymes in an RNA world, providing a plausible link to the protein-DNA world. Within the beta hairpin, there is a tyrosine corner motif that normally specifies beta-arch connections; this tyrosine motif was apparently recruited to discriminate against ribonucleotides, more recently than the evolution of the beta hairpin itself.


Assuntos
Pirofosfatases/metabolismo , Uracila/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Escherichia coli/genética , Humanos , Hidrólise , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Pirofosfatases/química , Pirofosfatases/genética
15.
EMBO J ; 15(13): 3442-7, 1996 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-8670846

RESUMO

Uracil-DNA glycosylase (UDG) protects the genome by removing mutagenic uracil residues resulting from deamination of cytosine. Uracil binds in a rigid pocket at the base of the DNA-binding groove of human UDG and the specificity for uracil over the structurally related DNA bases thymine and cytosine is conferred by shape complementarity, as well as by main chain and Asn204 side chain hydrogen bonds. Here we show that replacement of Asn204 by Asp or Tyr147 by Ala, Cys or Ser results in enzymes that have cytosine-DNA glycosylase (CDG) activity or thymine-DNA glycosylase (TDG) activity, respectively. CDG and the TDG all retain some UDG activity. CDG and TDG have kcat values in the same range as typical multisubstrate-DNA glycosylases, that is at least three orders of magnitude lower than that of the highly selective and efficient wild-type UDG. Expression of CDG or TDG in Escherichia coli causes 4- to 100-fold increases in the yield of rifampicin-resistant mutants. Thus, single amino acid substitutions in UDG result in less selective DNA glycosylases that release normal pyrimidines and confer a mutator phenotype upon the cell. Three of the four new pyrimidine-DNA glycosylases resulted from single nucleotide substitutions, events that may also happen in vivo.


Assuntos
Citosina , DNA Glicosilases , DNA/genética , N-Glicosil Hidrolases/metabolismo , Timina , Sítios de Ligação , Escherichia coli/citologia , Humanos , Mutagênese Sítio-Dirigida , Mutagênicos/metabolismo , N-Glicosil Hidrolases/genética , Uracila-DNA Glicosidase
16.
Cell ; 82(5): 701-8, 1995 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-7671300

RESUMO

Uracil-DNA glycosylase inhibitor (Ugi) is a B. subtilis bacteriophage protein that protects the uracil-containing phage DNA by irreversibly inhibiting the key DNA repair enzyme uracil-DNA glycosylase (UDG). The 1.9 A crystal structure of Ugi complexed to human UDG reveals that the Ugi structure, consisting of a twisted five-stranded antiparallel beta sheet and two alpha helices, binds by inserting a beta strand into the conserved DNA-binding groove of the enzyme without contacting the uracil specificity pocket. The resulting interface, which buries over 1200 A2 on Ugi and involves the entire beta sheet and an alpha helix, is polar and contains 22 water molecules. Ugi binds the sequence-conserved DNA-binding groove of UDG via shape and electrostatic complementarity, specific charged hydrogen bonds, and hydrophobic packing enveloping Leu-272 from a protruding UDG loop. The apparent mimicry by Ugi of DNA interactions with UDG provides both a structural mechanism for UDG binding to DNA, including the enzyme-assisted expulsion of uracil from the DNA helix, and a crystallographic basis for the design of inhibitors with scientific and therapeutic applications.


Assuntos
DNA Glicosilases , Reparo do DNA/fisiologia , N-Glicosil Hidrolases/química , Proteínas Virais/metabolismo , Sítios de Ligação/genética , Cristalografia , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , N-Glicosil Hidrolases/antagonistas & inibidores , N-Glicosil Hidrolases/ultraestrutura , Ligação Proteica/fisiologia , Conformação Proteica , Uracila/metabolismo , Uracila-DNA Glicosidase , Proteínas Virais/ultraestrutura
17.
Nat Struct Biol ; 2(7): 561-8, 1995 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-7664124

RESUMO

All organisms express dedicated repair enzymes for counteracting the cytotoxic and mutagenic potential of apurinic/apyrimidinic (AP) lesions, which would otherwise pose a serious threat to genome integrity. We present the predicted three-dimensional structure of the major human AP site-specific DNA repair endonuclease, HAP1, and show that an aspartate/histidine pair, in conjunction with a metal ion-coordinating glutamate residue, are critical for catalyzing the multiple repair activities of HAP1. We suggest that this catalytic mechanism is conserved in certain reverse transcriptases, but is distinct from the two metal ion-mediated mechanism defined for other hydrolytic nucleases.


Assuntos
Carbono-Oxigênio Liases , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Proteínas Nucleares/química , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Catálise , Cristalografia por Raios X , Primers do DNA/química , Escherichia coli/enzimologia , Exodesoxirribonucleases/química , Exodesoxirribonucleases/ultraestrutura , Humanos , Metaloproteínas/química , Metaloproteínas/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Nucleares/ultraestrutura , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Especificidade por Substrato
18.
Nature ; 374(6520): 381-6, 1995 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-7885481

RESUMO

The repair of DNA requires the removal of abasic sites, which are constantly generated in vivo both spontaneously and by enzymatic removal of uracil, and of bases damaged by active oxygen species, alkylating agents and ionizing radiation. The major apurinic/apyrimidinic (AP) DNA-repair endonuclease in Escherichia coli is the multifunctional enzyme exonuclease III, which also exhibits 3'-repair diesterase, 3'-->5' exonuclease, 3'-phosphomonoesterase and ribonuclease activities. We report here the 1.7 A resolution crystal structure of exonuclease III which reveals a 2-fold symmetric, four-layered alpha beta fold with similarities to both deoxyribonuclease I and RNase H. In the ternary complex determined at 2.6 A resolution, Mn2+ and dCMP bind to exonuclease III at one end of the alpha beta-sandwich, in a region dominated by positive electrostatic potential. Residues conserved among AP endonucleases from bacteria to man cluster within this active site and appear to participate in phosphate-bond cleavage at AP sites through a nucleophilic attack facilitated by a single bound metal ion.


Assuntos
Reparo do DNA/fisiologia , Exodesoxirribonucleases/química , Exodesoxirribonucleases/fisiologia , Sequência de Aminoácidos , Gráficos por Computador , Cristalografia por Raios X , Desoxicitidina Monofosfato/química , Desoxirribonuclease I/química , Eletroquímica , Escherichia coli/enzimologia , Humanos , Manganês/química , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Ribonuclease H/química , Relação Estrutura-Atividade
19.
Cell ; 80(6): 869-78, 1995 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-7697717

RESUMO

Crystal structures of the DNA repair enzyme human uracil-DNA glycosylase (UDG), combined with mutational analysis, reveal the structural basis for the specificity of the enzyme. Within the classic alpha/beta fold of UDG, sequence-conserved residues form a positively charged, active-site groove the width of duplex DNA, at the C-terminal edge of the central four-stranded parallel beta sheet. In the UDG-6-aminouracil complex, uracil binds at the base of the groove within a rigid preformed pocket that confers selectivity for uracil over other bases by shape complementary and by main chain and Asn-204 side chain hydrogen bonds. Main chain nitrogen atoms are positioned to stabilize the oxyanion intermediate generated by His-268 acting via nucleophilic attack or general base mechanisms. Specific binding of uracil flipped out from a DNA duplex provides a structural mechanism for damaged base recognition.


Assuntos
DNA Glicosilases , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/metabolismo , Conformação Proteica , Dobramento de Proteína , Sequência de Aminoácidos , Animais , Asparagina , Sítios de Ligação , Catálise , Clonagem Molecular , Cristalografia por Raios X/métodos , Dano ao DNA , Análise Mutacional de DNA , Reparo do DNA , Escherichia coli , Histidina , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , N-Glicosil Hidrolases/biossíntese , Biossíntese de Proteínas , Estrutura Secundária de Proteína , Coelhos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Reticulócitos/metabolismo , Especificidade por Substrato , Uracila-DNA Glicosidase
20.
Ann N Y Acad Sci ; 726: 223-34; discussion 234-5, 1994 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-8092679

RESUMO

The three-dimensional structure of exonuclease III, the major AP DNA repair endonuclease of Escherichia coli, has been determined using x-ray crystallographic methods at 2.7 A resolution. The atomic model was fit to an electron density map calculated with phases obtained from three isomorphous heavy atom derivatives. The overall chain fold of exonuclease III is that of a compact alpha,beta-protein of dimensions 55 by 50 by 45 A. The pair of extended beta-pleated sheets pack against each other in an approximately parallel fashion to form the hydrophobic core of a four-layered sandwich structure. These beta sheets are flanked by four alpha-helices that form the outer two layers of the fold. The individual strands of the beta-sheets are in a mostly antiparallel configuration and are linked by extensive loop regions that connect adjoining strands. The structure contains internal symmetry with the two extended beta-sheets and four alpha-helices related by a pseudo-twofold axis running approximately down the center of the two sheets. This internal symmetry is not mirrored in the structure of the loop regions, nor is it detectable within the amino acid sequence. There is a "groove" between the beta-sheets at one end of the molecule that is bordered by several of the exposed loop regions and may be significant for DNA binding.


Assuntos
Reparo do DNA , Escherichia coli/enzimologia , Exodesoxirribonucleases/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Exodesoxirribonucleases/metabolismo , Humanos , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...