Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569059

RESUMO

Declines in bumble bee species range and abundances are documented across multiple continents and have prompted the need for research to aid species recovery and conservation. The rusty patched bumble bee (Bombus affinis) is the first federally listed bumble bee species in North America. We conducted a range-wide population genetics study of B. affinis from across all extant conservation units to inform conservation efforts. To understand the species' vulnerability and help establish recovery targets, we examined population structure, patterns of genetic diversity, and population differentiation. Additionally, we conducted a site-level analysis of colony abundance to inform prioritizing areas for conservation, translocation, and other recovery actions. We find substantial evidence of population structuring along an east-to-west gradient. Putative populations show evidence of isolation by distance, high inbreeding coefficients, and a range-wide male diploidy rate of ~15%. Our results suggest the Appalachians represent a genetically distinct cluster with high levels of private alleles and substantial differentiation from the rest of the extant range. Site-level analyses suggest low colony abundance estimates for B. affinis compared to similar datasets of stable, co-occurring species. These results lend genetic support to trends from observational studies, suggesting that B. affinis has undergone a recent decline and exhibit substantial spatial structure. The low colony abundances observed here suggest caution in overinterpreting the stability of populations even where B. affinis is reliably detected interannually. These results help delineate informed management units, provide context for the potential risks of translocation programs, and help set clear recovery targets for this and other threatened bumble bee species.


Assuntos
Himenópteros , Abelhas/genética , Masculino , Animais , Espécies em Perigo de Extinção
2.
Proc Natl Acad Sci U S A ; 120(5): e2211223120, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36689649

RESUMO

The acute decline in global biodiversity includes not only the loss of rare species, but also the rapid collapse of common species across many different taxa. The loss of pollinating insects is of particular concern because of the ecological and economic values these species provide. The western bumble bee (Bombus occidentalis) was once common in western North America, but this species has become increasingly rare through much of its range. To understand potential mechanisms driving these declines, we used Bayesian occupancy models to investigate the effects of climate and land cover from 1998 to 2020, pesticide use from 2008 to 2014, and projected expected occupancy under three future scenarios. Using 14,457 surveys across 2.8 million km2 in the western United States, we found strong negative relationships between increasing temperature and drought on occupancy and identified neonicotinoids as the pesticides of greatest negative influence across our study region. The mean predicted occupancy declined by 57% from 1998 to 2020, ranging from 15 to 83% declines across 16 ecoregions. Even under the most optimistic scenario, we found continued declines in nearly half of the ecoregions by the 2050s and mean declines of 93% under the most severe scenario across all ecoregions. This assessment underscores the tenuous future of B. occidentalis and demonstrates the scale of stressors likely contributing to rapid loss of related pollinator species throughout the globe. Scaled-up, international species-monitoring schemes and improved integration of data from formal surveys and community science will substantively improve the understanding of stressors and bumble bee population trends.


Assuntos
Praguicidas , Abelhas , Animais , Teorema de Bayes , Biodiversidade , Insetos , Clima
3.
Environ Entomol ; 52(1): 108-118, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36412052

RESUMO

The U.S. Fish and Wildlife Service developed national guidelines to track species recovery of the endangered rusty patched bumble bee [Bombus affinis Cresson (Hymenoptera: Apidae)] and to investigate changes in species occupancy across space and time. As with other native bee monitoring efforts, managers have specifically acknowledged the need to address species detection uncertainty and determine the sampling effort required to infer species absence within sites. We used single-season, single-species occupancy models fit to field data collected in four states to estimate imperfect detection of B. affinis and to determine the survey effort required to achieve high confidence of species detection. Our analysis revealed a precipitous, seasonal, decline in B. affinis detection probability throughout the July through September sampling window in 2021. We estimated that six, 30-min surveys conducted in early July are required to achieve a 95% cumulative detection probability, whereas >10 surveys would be required in early August to achieve the same level of confidence. Our analysis also showed B. affinis was less likely to be detected during hot and humid days and at patches of reduced habitat quality. Bombus affinis was frequently observed on Monarda fistulosa (Lamiales: Lamiaceae), followed by [Pycnanthemum virginianum Rob. and Fernald (Lamiales: Lamiaceae)], Eutrochium maculatum Lamont (Asterales: Asteraceae), and Veronicastrum virginicum Farw. (Lamiales: Plantaginaceae). Although our research is focused on B. affinis, it is relevant for monitoring other bumble bees of conservation concern, such as B. occidentalis Greene (Hymenoptera: Apidae) and B. terricola Kirby (Hymenoptera: Apidae) for which monitoring efforts have been recently initiated and occupancy is a variable of conservation interest.


Assuntos
Asteraceae , Himenópteros , Lamiaceae , Magnoliopsida , Abelhas , Animais , Incerteza , Ecossistema
4.
Ecology ; 103(11): e3809, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35792515

RESUMO

Reversing biodiversity declines requires a better understanding of organismal mobility, as movement processes dictate the scale at which species interact with the environment. Previous studies have demonstrated that species foraging ranges, and therefore, habitat use increases with body size. Yet, foraging ranges are also affected by other life-history traits, such as sociality, which influence the need of and ability to detect resources. We evaluated the effect of body size and sociality on potential and realized foraging ranges using a compiled dataset of 383 measurements for 81 bee species. Potential ranges were larger than realized ranges and increased more steeply with body size. Highly eusocial species had larger realized foraging ranges than primitively eusocial or solitary taxa. We contend that potential ranges describe species movement capabilities, whereas realized ranges depict how foraging movements result from interactions between species traits and environmental conditions. Furthermore, the complex communication strategies and large colony sizes in highly eusocial species may facilitate foraging over wider areas in response to resource depletion. Our findings should contribute to a greater understanding of landscape ecology and conservation, as traits that influence movement mediate species vulnerability to habitat loss and fragmentation.


Assuntos
Comportamento Apetitivo , Abelhas , Tamanho Corporal , Comportamento Social , Animais , Abelhas/anatomia & histologia , Abelhas/fisiologia , Biodiversidade , Tamanho Corporal/fisiologia , Ecologia , Ecossistema , Comportamento Apetitivo/fisiologia
5.
J Anim Ecol ; 89(8): 1799-1810, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32358976

RESUMO

Fire-induced changes in the abundance and distribution of organisms, especially plants, can alter resource landscapes for mobile consumers driving bottom-up effects on their population sizes, morphologies and reproductive potential. We expect these impacts to be most striking for obligate visitors of plants, like bees and other pollinators, but these impacts can be difficult to interpret due to the limited information provided by forager counts in the absence of survival or fitness proxies. Increased bumble bee worker abundance is often coincident with the pulses of flowers that follow recent fire. However, it is unknown if observed postfire activity is due to underlying population growth or a stable pool of colonies recruiting more foragers to abundant resource patches. This distinction is necessary for determining the net impact of disturbance on bumble bees: are there population-wide responses or do just a few colonies reap the rewards? We estimated colony abundance before and after fire in burned and unburned areas using a genetic mark-recapture framework. We paired colony abundance estimates with measures of body size, counts of queens, and estimates of foraging and dispersal to assess changes in worker size, reproductive output, and landscape-scale movements. Higher floral abundance following fire not only increased forager abundance but also the number of colonies from which those foragers came. Importantly, despite a larger population size, we also observed increased mean worker size. Two years following fire, queen abundance was higher in both burned and unburned sites, potentially due to the dispersal of queens from burned into unburned areas. The effects of fire were transient; within two growing seasons, worker abundance was substantially reduced across the entire sampling area and body sizes were similar between burned and unburned sites. Our results reveal how disturbance can temporarily release populations from resource limitation, boosting the genetic diversity, body size, and reproductive output of populations. Given that the effects of fire on bumble bees acted indirectly through pulsed resource availability, it is likely our results are generalizable to other situations, such as habitat restorations, where resource density is enhanced within the landscape.


Assuntos
Incêndios Florestais , Animais , Abelhas , Ecossistema , Flores , Densidade Demográfica , Reprodução
6.
Am J Bot ; 105(7): 1154-1164, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30047984

RESUMO

PREMISE OF THE STUDY: Wildfire changes the demography, morphology, and behavior of plants, and may alter the pollinator community. Such trait changes may drastically alter the outcome of pollination mutualisms on plants; however, the direct role of fire on these mutualisms is poorly known. METHODS: Following a pair of fires in the northern California coast range chaparral, we censused floral visitor communities of Trichostema laxum (Lamiaceae), quantified visiting bee behavior, and estimated outcrossing rates using a widespread Mendelian recessive floral polymorphism across a matrix of populations in burned and unburned sites. We also compared pre- and postfire floral visitation in two populations. RESULTS: Outcrossing rates were significantly lower in burned areas; however, our data suggest that the much larger size of plants in burned areas, not burn status itself, drove this pattern. Large-bodied bees dominated floral visitor communities after fire, likely recruiting to the abundant postfire floral resources. These bees visited more flowers per plant than did the smaller bees prevalent before fire and in unburned areas, likely increasing selfing through geitonogamy (within-plant pollination), an effect made possible by the far larger size of plants in burned areas. CONCLUSIONS: Outcrossing rates dropped substantially after wildfires because of changes in the pollinators, plant display size, and their interactions. Reductions in outcrossing following fire may have important implications for population resilience and evolution in a changing climate with more frequent fires.


Assuntos
Abelhas/fisiologia , Plantas/anatomia & histologia , Animais , California , Flores/anatomia & histologia , Flores/fisiologia , Fenótipo , Fenômenos Fisiológicos Vegetais , Pólen/anatomia & histologia , Pólen/fisiologia , Polinização , Reprodução , Incêndios Florestais
7.
PLoS One ; 9(8): e103933, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25084166

RESUMO

Plant species and communities often reflect historic fire regimes via ecological and evolutionary responses to recurrent fires. Plant communities of the southeastern USA experience a wide array of fire regimes, perhaps nowhere more marked than the juxtaposition of fire-prone uplands and adjacent mesic ravines along Florida's Apalachicola River. The ravines contain many endemic and disjunct species, most notably the endangered endemic conifer Torreya taxifolia. A rapid decline in T. taxifolia over the past 60 years has been associated with widespread replacement by other tree species. To understand the changes accompanying the shift in ravine composition, we compared leaf litter flammability of nine historic and contemporary species. We measured maximum flame height, flame duration, smoldering duration, mass loss, absorptive capacity, and drying rate. Ordination and perMANOVA suggest the nine species segregated into three distinct groups: the fire-impeding T. taxifolia and Taxus floridana; an intermediate group of three deciduous angiosperms; and a mixed cluster of four flammable species. Results suggest T. taxifolia and T. floridana were fire-impeding species in these communities, while contemporary dominants burn similarly to the upslope pyric species. The increasing presence of fire-facilitating species may portend a shifting fire regime that further imperils T. taxifolia and other rare species in the formerly fire-safe ravines.


Assuntos
Ecossistema , Espécies em Perigo de Extinção , Incêndios , Rios , Taxaceae/fisiologia , Florida , Laboratórios , Folhas de Planta/fisiologia , Análise de Componente Principal , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...