Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 73(2): 211-224, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37963392

RESUMO

In humans, glucocorticoids (GCs) are commonly prescribed because of their anti-inflammatory and immunosuppressive properties. However, high doses of GCs often lead to side effects, including diabetes and lipodystrophy. We recently reported that adipocyte glucocorticoid receptor (GR)-deficient (AdipoGR-KO) mice under corticosterone (CORT) treatment exhibited a massive adipose tissue (AT) expansion associated with a paradoxical improvement of metabolic health compared with control mice. However, whether GR may control adipose development remains unclear. Here, we show a specific induction of hypoxia-inducible factor 1α (HIF-1α) and proangiogenic vascular endothelial growth factor A (VEGFA) expression in GR-deficient adipocytes of AdipoGR-KO mice compared with control mice, together with an increased adipose vascular network, as assessed by three-dimensional imaging. GR activation reduced HIF-1α recruitment to the Vegfa promoter resulting from Hif-1α downregulation at the transcriptional and posttranslational levels. Importantly, in CORT-treated AdipoGR-KO mice, the blockade of VEGFA by a soluble decoy receptor prevented AT expansion and the healthy metabolic phenotype. Finally, in subcutaneous AT from patients with Cushing syndrome, higher VEGFA expression was associated with a better metabolic profile. Collectively, these results highlight that adipocyte GR negatively controls AT expansion and metabolic health through the downregulation of the major angiogenic effector VEGFA and inhibition of vascular network development.


Assuntos
Glucocorticoides , Receptores de Glucocorticoides , Humanos , Camundongos , Animais , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Angiogênese , Adipócitos/metabolismo , Obesidade/metabolismo , Corticosterona/farmacologia , Corticosterona/metabolismo , Tecido Adiposo/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
2.
Front Endocrinol (Lausanne) ; 12: 739287, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690932

RESUMO

Background: Obesity is a major public health problem of our time as a risk factor for cardiometabolic disease and the available pharmacological tools needed to tackle the obesity pandemic are insufficient. Neurotensin (NTS) is a 13 amino acid peptide, which is derived from a larger precursor hormone called proneurotensin or Long Form NTS (LF NTS). NTS modulates neuro-transmitter release in the central system nervous, and facilitates intestinal fat absorption in the gastrointestinal tract. Mice lacking LF NTS are protected from high fat diet (HFD) induced obesity, hepatic steatosis and glucose intolerance. In humans, increased levels of LF NTS strongly and independently predict the development of obesity, diabetes mellitus, cardiovascular disease and mortality. With the perspective to develop therapeutic tools to neutralize LF NTS, we developed a monoclonal antibody, specifically inhibiting the function of the LF NTS (LF NTS mAb). This antibody was tested for the effects on body weight, metabolic parameters and behavior in mice made obese by high-fat diet. Methods: C57bl/6j mice were subjected to high-fat diet (HFD) until they reached an obesity state, then food was switched to chow. Mice were treated with either PBS (control therapy) or LF NTS mAb at the dose of 5 mg/kg once a week (i.v.). Mice weight, plasma biochemical analysis, fat and muscle size and distribution and behavioral tests were performed during the losing weight period and the stabilization period. Results: Obese mice treated with the LF NTS mAb lost weight significantly faster than the control treated group. LF NTS mAb treatment also resulted in smaller fat depots, increased fecal cholesterol excretion, reduced liver fat and larger muscle fiber size. Moreover, mice on active therapy were also less stressed, more curious and more active, providing a possible explanation to their weight loss. Conclusion: Our results demonstrate that in mice subjected to HFD-induced obesity, a blockade of LF NTS with a monoclonal antibody results in reduced body weight, adipocyte volume and increased muscle fiber size, possibly explained by beneficial effects on behavior. The underlying mechanisms as well as any future role of LF NTS mAb as an anti-obesity agent warrants further studies.


Assuntos
Anticorpos Monoclonais/farmacologia , Comportamento Animal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Neurotensina/imunologia , Obesidade/tratamento farmacológico , Redução de Peso/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Masculino , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Obesidade/etiologia , Obesidade/metabolismo
3.
Nat Commun ; 12(1): 1064, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594056

RESUMO

Polycystic ovary syndrome (PCOS) is characterized by an oligo-anovulation, hyperandrogenism and polycystic ovarian morphology combined with major metabolic disturbances. However, despite the high prevalence and the human and economic consequences of this syndrome, its etiology remains unknown. In this study, we show that female Goto-Kakizaki (GK) rats, a type 2 diabetes mellitus model, encapsulate naturally all the reproductive and metabolic hallmarks of lean women with PCOS at puberty and in adulthood. The analysis of their gestation and of their fetuses demonstrates that this PCOS-like phenotype is developmentally programmed. GK rats also develop features of ovarian hyperstimulation syndrome. Lastly, a comparison between GK rats and a cohort of women with PCOS reveals a similar reproductive signature. Thus, this spontaneous rodent model of PCOS represents an original tool for the identification of the mechanisms involved in its pathogenesis and for the development of novel strategies for its treatment.


Assuntos
Síndrome do Ovário Policístico/patologia , Adiposidade , Animais , Animais Recém-Nascidos , Peso Corporal , Análise Discriminante , Modelos Animais de Doenças , Dislipidemias/patologia , Sistema Endócrino/patologia , Ciclo Estral , Feminino , Teste de Tolerância a Glucose , Gonadotropinas/farmacologia , Hormônios/sangue , Humanos , Secreção de Insulina , Análise dos Mínimos Quadrados , Lipídeos/química , Masculino , Troca Materno-Fetal , Análise Multivariada , Ovário/patologia , Ovário/fisiopatologia , Fenótipo , Síndrome do Ovário Policístico/sangue , Síndrome do Ovário Policístico/fisiopatologia , Gravidez , Ratos Wistar , Reprodução , Maturidade Sexual
4.
Mol Metab ; 42: 101083, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32956848

RESUMO

OBJECTIVE: Individuals born with intrauterine growth retardation (IUGR) are more prone to cardio-metabolic diseases as adults, and environmental changes during the perinatal period have been identified as potentially crucial factors. We have studied in a preclinical model early-onset molecular alterations present before the development of a clinical phenotype. METHODS: We used a preclinical mouse model of induced IUGR, in which we modulated the nutrition of the pups during the suckling period, to modify their susceptibility to cardio-metabolic diseases in adulthood. RESULTS: Mice born with IUGR that were overfed (IUGR-O) during lactation rapidly developed obesity, hepatic steatosis and insulin resistance, by three months of age, whereas those subjected to nutrition restriction during lactation (IUGR-R) remained permanently thin and highly sensitive to insulin. Mice born with IUGR and fed normally during lactation (IUGR-N) presented an intermediate phenotype and developed insulin resistance by 12 months of age. Molecular alterations to the insulin signaling pathway with an early onset were observed in the livers of adult IUGR-N mice, nine months before the appearance of insulin resistance. The implication of epigenetic changes was revealed by ChIP sequencing, with both posttranslational H3K4me3 histone modifications and microRNAs involved. CONCLUSIONS: These two changes lead to the coherent regulation of insulin signaling, with a decrease in Akt gene transcription associated with an increase in the translation of its inhibitor, Pten. Moreover, we found that the levels of the implicated miRNA19a-3p also decreased in the blood of young adult IUGR mice nine months before the appearance of insulin resistance, suggesting a possible role for this miRNA as an early circulating biomarker of metabolic fate of potential use for precision medicine.


Assuntos
Retardo do Crescimento Fetal/genética , Resistência à Insulina/genética , MicroRNAs/genética , Animais , Ácidos Nucleicos Livres/genética , Modelos Animais de Doenças , Feminino , Retardo do Crescimento Fetal/sangue , Retardo do Crescimento Fetal/metabolismo , Histonas , Insulina/metabolismo , Resistência à Insulina/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , MicroRNAs/sangue , MicroRNAs/metabolismo , Transdução de Sinais
5.
Eur J Endocrinol ; 183(3): 297-306, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32570209

RESUMO

OBJECTIVE: Glucocorticoids (GC) are associated with increased cardiovascular morbidity despite increased HDL-C concentration. HDL-mediated cholesterol efflux, a major anti-atherogenic property of HDL particles, is negatively associated with CVD risk. We aimed to determine whether HDL-mediated cholesterol efflux was influenced by GC. DESIGN: Prospective, observational study. METHODS: Lipid parameters, HDL composition, HDL-mediated cholesterol efflux, cholesteryl ester transfer protein, phospholipid transfer protein and lecithin cholesterol acyl-transferase (LCAT) activities were determined in ten patients with giant cell arteritis before and 3 months after GC introduction and in seven control subjects. HDL concentration and composition, HDL-mediated cholesterol efflux and LCAT activity were determined in GC-treated mice. RESULTS: In patients, HDL-C concentration was higher after than before treatment GC-treatment (P = 0.002), while HDL-mediated cholesterol efflux was decreased (P = 0.008) and negatively associated with the proportion of cholesteryl ester in HDL (P = 0.04), independently of CRP. As well, in mice, HDL-C level was increased after GC exposure (P = 0.04) and HDL-mediated cholesterol efflux decreased (P = 0.04). GC-treated patients had higher cholesteryl ester content in HDL, higher HDL2-to-HDL3 ratio and higher LCAT activity than before treatment (P = 0.008, P = 0.02 and P = 0.004, respectively). CONCLUSIONS: We report, for the first time, that in patients with giant cell arteritis and mice treated with GC, HDL-mediated cholesterol efflux was impaired by GC besides an increased HDL-C level. This impaired HDL functionality, possibly related to HDL enrichment in cholesteryl ester, could contribute to the increased CVD risk observed in GC-treated patients. Further studies are needed in larger populations, to further decipher the effect of GC on HDL.


Assuntos
HDL-Colesterol/sangue , Colesterol/metabolismo , Glucocorticoides/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/metabolismo , Estudos Prospectivos , Esfingolipídeos/metabolismo
6.
Sci Rep ; 10(1): 5186, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198362

RESUMO

The Wnt/ß-catenin pathway plays a pivotal role in liver structural and metabolic homeostasis. Wnt activity is tightly regulated by the acyltransferase Porcupine through the addition of palmitoleate. Interestingly palmitoleate can be endogenously produced by the stearoyl-CoA desaturase 1 (SCD1), a lipogenic enzyme transcriptionally regulated by insulin. This study aimed to determine whether nutritional conditions, and insulin, regulate Wnt pathway activity in liver. An adenoviral TRE-Luciferase reporter was used as a readout of Wnt/ß-catenin pathway activity, in vivo in mouse liver and in vitro in primary hepatocytes. Refeeding enhanced TRE-Luciferase activity and expression of Wnt target genes in mice liver, revealing a nutritional regulation of the Wnt/ß-catenin pathway. This effect was inhibited in liver specific insulin receptor KO (iLIRKO) mice and upon wortmannin or rapamycin treatment. Overexpression or inhibition of SCD1 expression regulated Wnt/ß-catenin activity in primary hepatocytes. Similarly, palmitoleate added exogenously or produced by SCD1-mediated desaturation of palmitate, induced Wnt signaling activity. Interestingly, this effect was abolished in the absence of Porcupine, suggesting that both SCD1 and Porcupine are key mediators of insulin-induced Wnt/ß-catenin activity in hepatocytes. Altogether, our findings suggest that insulin and lipogenesis act as potential novel physiological inducers of hepatic Wnt/ß-catenin pathway.


Assuntos
Insulina/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/efeitos dos fármacos , Aciltransferases/metabolismo , Animais , Ácidos Graxos Monoinsaturados/farmacologia , Hepatócitos/metabolismo , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo
7.
J Hepatol ; 72(4): 627-635, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31760070

RESUMO

BACKGROUND & AIMS: In non-alcoholic fatty liver disease (NAFLD), hepatocytes can undergo necroptosis: a regulated form of necrotic cell death mediated by the receptor-interacting protein kinase (RIPK) 1. Herein, we assessed the potential for RIPK1 and its downstream effector mixed lineage kinase domain-like protein (MLKL) to act as therapeutic targets and markers of activity in NAFLD. METHODS: C57/BL6J-mice were fed a normal chow diet or a high-fat diet (HFD). The effect of RIPA-56, a highly specific inhibitor of RIPK1, was evaluated in HFD-fed mice and in primary human steatotic hepatocytes. RIPK1 and MLKL concentrations were measured in the serum of patients with NAFLD. RESULTS: When used as either a prophylactic or curative treatment for HFD-fed mice, RIPA-56 caused a downregulation of MLKL and a reduction of liver injury, inflammation and fibrosis, characteristic of non-alcoholic steatohepatitis (NASH), as well as of steatosis. This latter effect was reproduced by treating primary human steatotic hepatocytes with RIPA-56 or necrosulfonamide, a specific inhibitor of human MLKL, and by knockout (KO) of Mlkl in fat-loaded AML-12 mouse hepatocytes. Mlkl-KO led to activation of mitochondrial respiration and an increase in ß-oxidation in steatotic hepatocytes. Along with decreased MLKL activation, Ripk3-KO mice exhibited increased activities of the liver mitochondrial respiratory chain complexes in experimental NASH. In patients with NAFLD, serum concentrations of RIPK1 and MLKL increased in correlation with activity. CONCLUSION: The inhibition of RIPK1 improves NASH features in HFD-fed mice and reverses steatosis via an MLKL-dependent mechanism that, at least partly, involves an increase in mitochondrial respiration. RIPK1 and MLKL are potential serum markers of activity and promising therapeutic targets in NAFLD. LAY SUMMARY: There are currently no pharmacological treatment options for non-alcoholic fatty liver disease (NAFLD), which is now the most frequent liver disease. Necroptosis is a regulated process of cell death that can occur in hepatocytes during NAFLD. Herein, we show that RIPK1, a gatekeeper of the necroptosis pathway that is activated in NAFLD, can be inhibited by RIPA-56 to reduce not only liver injury, inflammation and fibrosis, but also steatosis in experimental models. These results highlight the potential of RIPK1 as a therapeutic target in NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/sangue , Acrilamidas/farmacologia , Idoso , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Necroptose/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases/sangue , Proteínas Quinases/deficiência , Proteínas Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Resultado do Tratamento
8.
Diabetes ; 68(2): 305-317, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30455377

RESUMO

Widely used for their anti-inflammatory and immunosuppressive properties, glucocorticoids are nonetheless responsible for the development of diabetes and lipodystrophy. Despite an increasing number of studies focused on the adipocyte glucocorticoid receptor (GR), its precise role in the molecular mechanisms of these complications has not been elucidated. In keeping with this goal, we generated a conditional adipocyte-specific murine model of GR invalidation (AdipoGR knockout [KO] mice). Interestingly, when administered a corticosterone treatment to mimic hypercorticism conditions, AdipoGR-KO mice exhibited an improved glucose tolerance and insulin sensitivity. This was related to the adipose-specific activation of the insulin-signaling pathway, which contributed to fat mass expansion, as well as a shift toward an anti-inflammatory macrophage polarization in adipose tissue of AdipoGR-KO animals. Moreover, these mice were protected against ectopic lipid accumulation in the liver and displayed an improved lipid profile, contributing to their overall healthier phenotype. Altogether, our results indicate that adipocyte GR is a key factor of adipose tissue expansion and glucose and lipid metabolism control, which should be taken into account in the further design of adipocyte GR-selective modulators.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Corticosterona/farmacologia , Erros Inatos do Metabolismo/metabolismo , Receptores de Glucocorticoides/deficiência , Tecido Adiposo/efeitos dos fármacos , Animais , Células Cultivadas , Citometria de Fluxo , Teste de Tolerância a Glucose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Glucocorticoides/metabolismo
9.
Sci Rep ; 7(1): 1749, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28496206

RESUMO

WISP1 (Wnt1-inducible signaling pathway protein-1, also known as CCN4) is a member of the CCN family able to mediate cell growth, transformation and survival in a tissue-specific manner. Here, we report that WISP1 expression was highly increased in preadipocytes and decreased during adipocyte differentiation. Moreover, we observed an increase in WISP1 gene expression in adipose tissue from both diet-induced and leptin-deficient ob/ob obese mice, suggesting that WISP1 could be involved in the pathophysiological onset of obesity. Interestingly, overexpression of WISP1 in 3T3-F442A cells prevented adipocyte differentiation via downregulation of peroxisome proliferator-activated receptor (PPARγ) transcriptional activity thereby attenuating the expression of adipogenic markers. Conversely, silencing of WISP1 enhanced adipocyte differentiation. We further show that the inactivation of PPARγ transcriptional activity was mediated, at least in part, by a direct physical association between WISP1 and PPARγ, followed by proteasome-dependent degradation of PPARγ. These results suggest for the first time that WISP1 interacts with PPARγ and that this interaction results in the inhibition of PPARγ activity. Taken together our results suggest that WISP1 functions as a negative regulator of adipogenesis.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Proteínas de Sinalização Intercelular CCN/metabolismo , Diferenciação Celular , PPAR gama/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Células 3T3-L1 , Adipogenia/genética , Tecido Adiposo/metabolismo , Animais , Proteínas de Sinalização Intercelular CCN/genética , Diferenciação Celular/genética , Regulação para Baixo/genética , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Inativação Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas Proto-Oncogênicas/genética , Transcrição Gênica , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/genética , Via de Sinalização Wnt
10.
Diabetes ; 65(9): 2502-15, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27284105

RESUMO

Identification of new adipokines that potentially link obesity to insulin resistance represents a major challenge. We recently showed that NOV/CCN3, a multifunctional matricellular protein, is synthesized and secreted by adipose tissue, with plasma levels highly correlated with BMI. NOV involvement in tissue repair, fibrotic and inflammatory diseases, and cancer has been previously reported. However, its role in energy homeostasis remains unknown. We investigated the metabolic phenotype of NOV(-/-) mice fed a standard or high-fat diet (HFD). Strikingly, the weight of NOV(-/-) mice was markedly lower than that of wild-type mice but only on an HFD. This was related to a significant decrease in fat mass associated with an increased proportion of smaller adipocytes and to a higher expression of genes involved in energy expenditure. NOV(-/-) mice fed an HFD displayed improved glucose tolerance and insulin sensitivity. Interestingly, the absence of NOV was associated with a change in macrophages profile (M1-like to M2-like), in a marked decrease in adipose tissue expression of several proinflammatory cytokines and chemokines, and in enhanced insulin signaling. Conversely, NOV treatment of adipocytes increased chemokine expression. Altogether, these results show that NOV is a new adipocytokine that could be involved in obesity-associated insulin-resistance.


Assuntos
Tecido Adiposo/metabolismo , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , Obesidade/metabolismo , Células 3T3-L1 , Tecido Adiposo/fisiopatologia , Animais , Composição Corporal/genética , Composição Corporal/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Feminino , Intolerância à Glucose/metabolismo , Intolerância à Glucose/fisiopatologia , Inflamação/metabolismo , Inflamação/patologia , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Fígado/metabolismo , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Sobre-Expressa em Nefroblastoma/genética , Obesidade/fisiopatologia , Pâncreas/metabolismo , RNA Interferente Pequeno/genética
11.
Toxicol Appl Pharmacol ; 303: 90-100, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27180240

RESUMO

The Constitutive Androstane Receptor (CAR, NR1I3) has been newly described as a regulator of energy metabolism. A relevant number of studies using animal models of obesity suggest that CAR activation could be beneficial on the metabolic balance. However, this remains controversial and the underlying mechanisms are still unknown. This work aimed to investigate the effect of CAR activation on hepatic energy metabolism during physiological conditions, i.e. in mouse models not subjected to metabolic/nutritional stress. Gene expression profiling in the liver of CAR knockout and control mice on chow diet and treated with a CAR agonist highlighted CAR-mediated up-regulations of lipogenic genes, concomitant with neutral lipid accumulation. A strong CAR-mediated up-regulation of the patatin-like phospholipase domain-containing protein 3 (Pnpla3) was demonstrated. Pnpla3 is a gene whose polymorphism is associated with the pathogenesis of nonalcoholic fatty liver disease (NAFLD) development. This observation was confirmed in human hepatocytes treated with the antiepileptic drug and CAR activator, phenobarbital and in immortalized human hepatocytes treated with CITCO. Studying the molecular mechanisms controlling Pnpla3 gene expression, we demonstrated that CAR does not act by a direct regulation of Pnpla3 transcription or via the Liver X Receptor but may rather involve the transcription factor Carbohydrate Responsive Element-binding protein. These data provide new insights into the regulation by CAR of glycolytic and lipogenic genes and on pathogenesis of steatosis. This also raises the question concerning the impact of drugs and environmental contaminants in lipid-associated metabolic diseases.


Assuntos
Fígado Gorduroso/metabolismo , Lipogênese , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Linhagem Celular , Células Cultivadas , Receptor Constitutivo de Androstano , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Lipase/genética , Lipase/metabolismo , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenobarbital/farmacologia , Piridinas/farmacologia , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Life Sci ; 151: 167-173, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26872981

RESUMO

AIMS: Oleuropein has been recognized as an important medicinal compound because of its various biological properties, including anti-cancer, antidiabetic and anti-atherosclerotic activities. Here, we evaluate the antioxidant activity as well as the mechanism of the hypoglycemic effects of oleuropein in C2C12 cells and we establish the mechanism underlying these effects. MAIN METHODS: To perform this study, C2C12 cells viability was analyzed via MTT assay and the antioxidant activity was investigated by ROS and TBARS assays. Also, the effect of oleuropein on AMPK and PI3 kinase signaling pathways was evaluated. KEY FINDINGS: Treatment with oleuropein was able to protect cells against H2O2 induced stress in cells. On the other hand, the molecular bases of its actions have been scarcely understood. Oleuropein significantly enhanced glucose consumption and the phosphorylation of AMPK (AMP-activated protein kinase/ACC (acetyl-CoA carboxylase)) and MAPKs (mitogen-activated protein kinases), but not PI3 kinase (Phosphatidylinositol 3-kinase)/Akt. However, the co-treatment of oleuropein and insulin improved the insulin sensitivity via insulin-dependent (PI3 kinase/Akt) and insulin independent (AMPK/ACC) pathways. These results could be confirmed from the findings of GLUT4 translocation which was strongly enhanced in the case of oleuropein. SIGNIFICANCE: Our results provide important insights for the possible mechanism of action of oleuropein as a therapeutic agent in diabetic patients.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Resistência à Insulina , Insulina/metabolismo , Iridoides/farmacologia , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Sinergismo Farmacológico , Ativação Enzimática/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Hipoglicemiantes/farmacologia , Glucosídeos Iridoides , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Músculo Esquelético/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Fatores de Transcrição/metabolismo
13.
Mol Cell Endocrinol ; 411: 58-66, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25907140

RESUMO

Semicarbazide-sensitive amine oxidase (SSAO), an enzyme highly expressed on adipocyte plasma membranes, converts primary amines into aldehydes, ammonium and hydrogen peroxide, and is likely involved in endothelial damage during the course of diabetes and obesity. We investigated whether in vitro, adipocyte SSAO was modulated under hypoxic conditions that is present in adipose tissue from obese or intensive care unit. Physical or pharmacological hypoxia decreased SSAO activity in murine adipocytes and human adipose tissue explants, while enzyme expression was preserved. This effect was time-, dose-dependent and reversible. This down-regulation was confirmed in vivo in subcutaneous adipose tissue from a rat model of hypoxia. Hypoxia-induced suppression in SSAO activity was independent of the HIF-1-α pathway or of oxidative stress, but was partially antagonized by medium acidification. Hypoxia-induced down-regulation of SSAO activity could represent an adaptive mechanism to lower toxic molecules production, and may thus protect from tissue injury during these harmful conditions.


Assuntos
Adipócitos/metabolismo , Amina Oxidase (contendo Cobre)/metabolismo , Hipóxia/metabolismo , Células 3T3 , Animais , Regulação para Baixo , Humanos , Camundongos , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley
14.
Hepatology ; 59(6): 2344-57, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24214913

RESUMO

UNLABELLED: ß-catenin signaling can be both a physiological and oncogenic pathway in the liver. It controls compartmentalized gene expression, allowing the liver to ensure its essential metabolic function. It is activated by mutations in 20%-40% of hepatocellular carcinomas (HCCs) with specific metabolic features. We decipher the molecular determinants of ß-catenin-dependent zonal transcription using mice with ß-catenin-activated or -inactivated hepatocytes, characterizing in vivo their chromatin occupancy by T-cell factor (Tcf)-4 and ß-catenin, transcriptome, and metabolome. We find that Tcf-4 DNA bindings depend on ß-catenin. Tcf-4/ß-catenin binds Wnt-responsive elements preferentially around ß-catenin-induced genes. In contrast, genes repressed by ß-catenin bind Tcf-4 on hepatocyte nuclear factor 4 (Hnf-4)-responsive elements. ß-Catenin, Tcf-4, and Hnf-4α interact, dictating ß-catenin transcription, which is antagonistic to that elicited by Hnf-4α. Finally, we find the drug/bile metabolism pathway to be the one most heavily targeted by ß-catenin, partly through xenobiotic nuclear receptors. CONCLUSIONS: ß-catenin patterns the zonal liver together with Tcf-4, Hnf-4α, and xenobiotic nuclear receptors. This network represses lipid metabolism and exacerbates glutamine, drug, and bile metabolism, mirroring HCCs with ß-catenin mutational activation.


Assuntos
Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Neoplasias Hepáticas/etiologia , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , beta Catenina/metabolismo , Animais , Cromatina/metabolismo , Redes Reguladoras de Genes , Humanos , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Receptor Cross-Talk , beta Catenina/genética
15.
Clin Res Hepatol Gastroenterol ; 37(1): 30-5, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22884299

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is an emerging epidemic disease. It represents a large spectrum of liver diseases, and affects both adults and children. The etiology of NAFLD is multifactorial. Indeed, several events such as caloric imbalance including sedentary lifestyle, obesity and/or a predisposing genetic background are key players in the increasing risk for NAFLD development and its progression. Recently, a sequence variation within the gene encoding for patatin-like phospholipase containing 3 (PNPLA3, rs738409) was found to modulate steatosis, inflammation and fibrosis in NAFLD. It was also demonstrated as a novel genetic marker associated with progressive ALD (alcoholic liver disease). In this mini-review, we summarize the current knowledge on (i) PNPLA3 variant(s) in the pathogenesis of liver diseases, and (ii) PNPLA3 gene regulation and potential function in liver.


Assuntos
Fígado Gorduroso/genética , Lipase/genética , Lipase/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Progressão da Doença , Marcadores Genéticos/genética , Humanos , Hepatopatia Gordurosa não Alcoólica
16.
J Clin Invest ; 122(6): 2176-94, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22546860

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is associated with all features of the metabolic syndrome. Although deposition of excess triglycerides within liver cells, a hallmark of NAFLD, is associated with a loss of insulin sensitivity, it is not clear which cellular abnormality arises first. We have explored this in mice overexpressing carbohydrate responsive element-binding protein (ChREBP). On a standard diet, mice overexpressing ChREBP remained insulin sensitive, despite increased expression of genes involved in lipogenesis/fatty acid esterification and resultant hepatic steatosis (simple fatty liver). Lipidomic analysis revealed that the steatosis was associated with increased accumulation of monounsaturated fatty acids (MUFAs). In primary cultures of mouse hepatocytes, ChREBP overexpression induced expression of stearoyl-CoA desaturase 1 (Scd1), the enzyme responsible for the conversion of saturated fatty acids (SFAs) into MUFAs. SFA impairment of insulin-responsive Akt phosphorylation was therefore rescued by the elevation of Scd1 levels upon ChREBP overexpression, whereas pharmacological or shRNA-mediated reduction of Scd1 activity decreased the beneficial effect of ChREBP on Akt phosphorylation. Importantly, ChREBP-overexpressing mice fed a high-fat diet showed normal insulin levels and improved insulin signaling and glucose tolerance compared with controls, despite having greater hepatic steatosis. Finally, ChREBP expression in liver biopsies from patients with nonalcoholic steatohepatitis was increased when steatosis was greater than 50% and decreased in the presence of severe insulin resistance. Together, these results demonstrate that increased ChREBP can dissociate hepatic steatosis from insulin resistance, with beneficial effects on both glucose and lipid metabolism.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Fígado Gorduroso/metabolismo , Resistência à Insulina , Lipogênese , Fígado/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fígado Gorduroso/patologia , Feminino , Humanos , Fígado/patologia , Masculino , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Camundongos , Hepatopatia Gordurosa não Alcoólica , Proteínas Nucleares/genética , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Fatores de Transcrição/genética
17.
Diabetes ; 60(5): 1399-413, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21471514

RESUMO

OBJECTIVE: Carbohydrate-responsive element-binding protein (ChREBP) is a key transcription factor that mediates the effects of glucose on glycolytic and lipogenic genes in the liver. We have previously reported that liver-specific inhibition of ChREBP prevents hepatic steatosis in ob/ob mice by specifically decreasing lipogenic rates in vivo. To better understand the regulation of ChREBP activity in the liver, we investigated the implication of O-linked ß-N-acetylglucosamine (O-GlcNAc or O-GlcNAcylation), an important glucose-dependent posttranslational modification playing multiple roles in transcription, protein stabilization, nuclear localization, and signal transduction. RESEARCH DESIGN AND METHODS: O-GlcNAcylation is highly dynamic through the action of two enzymes: the O-GlcNAc transferase (OGT), which transfers the monosaccharide to serine/threonine residues on a target protein, and the O-GlcNAcase (OGA), which hydrolyses the sugar. To modulate ChREBP(OG) in vitro and in vivo, the OGT and OGA enzymes were overexpressed or inhibited via adenoviral approaches in mouse hepatocytes and in the liver of C57BL/6J or obese db/db mice. RESULTS: Our study shows that ChREBP interacts with OGT and is subjected to O-GlcNAcylation in liver cells. O-GlcNAcylation stabilizes the ChREBP protein and increases its transcriptional activity toward its target glycolytic (L-PK) and lipogenic genes (ACC, FAS, and SCD1) when combined with an active glucose flux in vivo. Indeed, OGT overexpression significantly increased ChREBP(OG) in liver nuclear extracts from fed C57BL/6J mice, leading in turn to enhanced lipogenic gene expression and to excessive hepatic triglyceride deposition. In the livers of hyperglycemic obese db/db mice, ChREBP(OG) levels were elevated compared with controls. Interestingly, reducing ChREBP(OG) levels via OGA overexpression decreased lipogenic protein content (ACC, FAS), prevented hepatic steatosis, and improved the lipidic profile of OGA-treated db/db mice. CONCLUSIONS: Taken together, our results reveal that O-GlcNAcylation represents an important novel regulation of ChREBP activity in the liver under both physiological and pathophysiological conditions.


Assuntos
Fígado Gorduroso/metabolismo , Fígado/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Linhagem Celular , Células Cultivadas , Imunoprecipitação da Cromatina , Fígado Gorduroso/enzimologia , Fígado Gorduroso/genética , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Immunoblotting , Imunoprecipitação , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , N-Acetilglucosaminiltransferases/genética , Proteínas Nucleares/genética , Ligação Proteica , Fatores de Transcrição/genética , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismo
18.
J Hepatol ; 55(1): 145-53, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21145868

RESUMO

BACKGROUND & AIMS: The adiponutrin/PNPLA3 (patatin-like phospholipase domain-containing protein 3) variant I148M has recently emerged as an important marker of human fatty liver disease. In order to understand the role of the adiponutrin/PNPLA3 protein, we investigated the regulation of its expression in both human and mouse hepatocytes. METHODS: Adiponutrin/PNPLA3 and lipogenic enzyme expression was determined by real-time PCR analysis in a wide panel of analysis in vivo in the mouse liver and in vitro in murine hepatocytes and human hepatocyte cell lines infected with ChREBP or SREBP1c-expressing adenoviruses. RESULTS: We show that in the mouse liver, adiponutrin/PNPLA3 gene expression is under the direct transcriptional control of ChREBP (carbohydrate-response element-binding protein) and SREBP1c (sterol regulatory element binding protein1c) in response to glucose and insulin, respectively. In silico analysis revealed the presence of a ChoRE (carbohydrate response element) and of a SRE (sterol response element) binding site on the mouse adiponutrin/PNPLA3 gene promoter. Point mutation analysis in reporter gene assays identified the functional response of these two binding sites in the mouse adiponutrin/PNPLA3 promoter. In contrast, in human immortalized hepatocytes and in HepG2 hepatoma cells, only SREBP1c was able to induce adiponutrin/PNPLA3 expression, whereas ChREBP was unable to modulate its expression. CONCLUSIONS: All together, our results suggest that adiponutrin/PNPLA3 is regulated by two key factors of the glycolytic and lipogenic pathways, raising the question of its implication in the metabolism of carbohydrates and lipids.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Hepatócitos/metabolismo , Lipase/genética , Proteínas de Membrana/genética , Proteínas Nucleares/metabolismo , Fosfolipases A2 Independentes de Cálcio/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação/genética , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Células HEK293 , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Técnicas In Vitro , Insulina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Estado Nutricional , Regiões Promotoras Genéticas
19.
PLoS One ; 5(10): e13464, 2010 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-20976162

RESUMO

BACKGROUND: The nuclear receptor chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) is an important coordinator of glucose homeostasis. We report, for the first time, a unique differential regulation of its expression by the nutritional status in the mouse hypothalamus compared to peripheral tissues. METHODOLOGY/PRINCIPAL FINDINGS: Using hyperinsulinemic-euglycemic clamps and insulinopenic mice, we show that insulin upregulates its expression in the hypothalamus. Immunofluorescence studies demonstrate that COUP-TFII gene expression is restricted to a subpopulation of ventromedial hypothalamic neurons expressing the melanocortin receptor. In GT1-7 hypothalamic cells, the MC4-R agonist MTII leads to a dose dependant increase of COUP-TFII gene expression secondarily to a local increase in cAMP concentrations. Transfection experiments, using a COUP-TFII promoter containing a functional cAMP responsive element, suggest a direct transcriptional activation by cAMP. Finally, we show that the fed state or intracerebroventricular injections of MTII in mice induce an increased hypothalamic COUP-TFII expression associated with a decreased hepatic and pancreatic COUP-TFII expression. CONCLUSIONS/SIGNIFICANCE: These observations strongly suggest that hypothalamic COUP-TFII gene expression could be a central integrator of insulin and melanocortin signaling pathway within the ventromedial hypothalamus. COUP-TFII could play a crucial role in brain integration of circulating signal of hunger and satiety involved in energy balance regulation.


Assuntos
Fator II de Transcrição COUP/genética , Regulação da Expressão Gênica , Hipotálamo/metabolismo , Melanocortinas/metabolismo , Neurônios/metabolismo , Animais , Imunofluorescência , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ativação Transcricional
20.
Mol Pharmacol ; 75(5): 1052-61, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19201819

RESUMO

Change in body weight is a frequent side effect of antidepressants and is considered to be mediated by central effects on food intake and energy expenditure. The antidepressant phenelzine (Nardil) potently inhibits both monoamine oxidase and semicarbazide-sensitive amine oxidase activities, two enzymes that are highly expressed in adipose tissue, raising the possibility that it could directly alter adipocyte biology. Treatment with this compound is rather associated with weight gain. The aim of this work was to examine the effects of phenelzine on differentiation and metabolism of cultured human and mouse preadipocytes and to characterize the mechanisms involved in these effects. In all preadipocyte models, phenelzine induced a time- and dose-dependent reduction in differentiation and triglyceride accumulation. Modulation of lipolysis or glucose transport was not involved in phenelzine action. This effect was supported by the reduced expression in the key adipogenic transcription factors peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and CCAAT/enhancer binding protein-alpha, which was observed only at the highest drug concentrations (30-100 microM). The PPAR-gamma agonists thiazolidinediones did not reverse phenelzine effects. By contrast, the reduction in both cell triglycerides and sterol regulatory element-binding protein-1c (SREBP-1c) was detectable at lower phenelzine concentrations (1-10 microM). Phenelzine effect on triglyceride content was prevented by providing free fatty acids to the cells and was partially reversed by overexpression of a dominant-positive form of SREBP-1c, showing the privileged targeting of the lipogenic pathway. When considered together, these findings demonstrate that an antidepressant directly and potently inhibits adipocyte lipid storage and differentiation, which could contribute to psychotropic drug side effects on energy homeostasis.


Assuntos
Adipócitos/efeitos dos fármacos , Antidepressivos/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Fenelzina/farmacologia , Células-Tronco/efeitos dos fármacos , Células 3T3 , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Adolescente , Adulto , Idoso , Animais , Diferenciação Celular/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , PPAR gama/fisiologia , Células-Tronco/citologia , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...