Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Am Chem Soc ; 123(34): 8239-47, 2001 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-11516275

RESUMO

The secondary building unit (SBU) has been identified as a useful tool in the analysis of complex metal-organic frameworks (MOFs). We illustrate its applicability to rationalizing MOF crystal structures by analysis of nine new MOFs which have been characterized by single-crystal X-ray diffraction. Tetrahedral SBUs in Zn(ADC)(2).(HTEA)(2) (MOF-31), Cd(ATC).[Cd(H(2)O)(6)](H2O)(5) (MOF-32), and Zn(2)(ATB)(H2O).(H2O)(3)(DMF)(3) (MOF-33) are linked into diamond networks, while those of Ni(2)(ATC)(H(2)O)(4).(H2O)(4) (MOF-34) have the structure of the Al network in SrAl(2). Frameworks constructed from less symmetric tetrahedral SBUs have the Ga network of CaGa(2)O(4) as illustrated by Zn(2)(ATC).(C(2)H(5)OH)(2)(H2O)(2) (MOF-35) structure. Squares and tetrahedral SBUs in Zn(2)(MTB)(H2O)(2).(DMF)(6)(H2O)(5) (MOF-36) are linked into the PtS network, which is the simplest structure type known for the assembly of these shapes. The octahedral SBUs found in Zn(2)(NDC)(3).[(HTEA)(DEF)(ClBz)](2) (MOF-37) form the most common structure for linking octahedral shapes, namely, the boron network in CaB(6). New structure types for linking triangular and trigonal prismatic SBUs are found in Zn(3)O(BTC)(2).(HTEA)(2) (MOF-38) and Zn(3)O(HBTB)(2)(H2O).(DMF)(0.5)(H2O)(3) (MOF-39). The synthesis, crystal structure, and structure analysis using the SBU approach are presented for each MOF.

2.
Acc Chem Res ; 34(4): 319-30, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11308306

RESUMO

Secondary building units (SBUs) are molecular complexes and cluster entities in which ligand coordination modes and metal coordination environments can be utilized in the transformation of these fragments into extended porous networks using polytopic linkers (1,4-benzenedicarboxylate, 1,3,5,7-adamantanetetracarboxylate, etc.). Consideration of the geometric and chemical attributes of the SBUs and linkers leads to prediction of the framework topology, and in turn to the design and synthesis of a new class of porous materials with robust structures and high porosity.


Assuntos
Ácidos Carboxílicos/química , Cristalização , Estrutura Molecular , Zeolitas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA