Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Heart Assoc ; 9(19): e017544, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32990120

RESUMO

Background Hydrogen sulfide (H2S) is an important endogenous physiological signaling molecule and exerts protective properties in the cardiovascular system. Cystathionine γ-lyase (CSE), 1 of 3 H2S producing enzyme, is predominantly localized in the vascular endothelium. However, the regulation of CSE in vascular endothelium remains incompletely understood. Methods and Results We generated inducible endothelial cell-specific CSE overexpressed transgenic mice (EC-CSE Tg) and endothelial cell-specific CSE knockout mice (EC-CSE KO), and investigated vascular function in isolated thoracic aorta, treadmill exercise capacity, and myocardial injury following ischemia-reperfusion in these mice. Overexpression of CSE in endothelial cells resulted in increased circulating and myocardial H2S and NO, augmented endothelial-dependent vasorelaxation response in thoracic aorta, improved exercise capacity, and reduced myocardial-reperfusion injury. In contrast, genetic deletion of CSE in endothelial cells led to decreased circulating H2S and cardiac NO production, impaired endothelial dependent vasorelaxation response and reduced exercise capacity. However, myocardial-reperfusion injury was not affected by genetic deletion of endothelial cell CSE. Conclusions CSE-derived H2S production in endothelial cells is critical in maintaining endothelial function, exercise capacity, and protecting against myocardial ischemia/reperfusion injury. Our data suggest that the endothelial NO synthase-NO pathway is likely involved in the beneficial effects of overexpression of CSE in the endothelium.


Assuntos
Cistationina gama-Liase/metabolismo , Células Endoteliais/metabolismo , Tolerância ao Exercício/fisiologia , Sulfeto de Hidrogênio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Óxido Nítrico/metabolismo , Animais , Aorta Torácica/metabolismo , Aorta Torácica/fisiopatologia , Camundongos , Camundongos Transgênicos , Miocárdio/metabolismo , Miocárdio/patologia , Óxido Nítrico Sintase/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...