Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 9(1)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952215

RESUMO

Cadmium is a heavy metal (HM) that inhibits plant growth and leads to death, causing great losses in yields, especially in Cd hyperaccumulator crops such as Glycine max (L.) Merr. (soybean), a worldwide economically important legume. Furthermore, Cd incorporation into the food chain is a health hazard. Oxidative stress (OS) is a plant response to abiotic and biotic stresses with an intracellular burst of reactive oxygen species (ROS) that causes damage to lipids, proteins, and DNA. The arbuscular mycorrhizal fungal (AMF) association is a plant strategy to cope with HM and to alleviate OS. Our aim was to evaluate the mitigation effects of mycorrhization with AMF Rhizophagus intraradices on soybean growth, nutrients, Cd accumulation, lipid peroxidation, and the activity of different antioxidant agents under Cd (0.7-1.2 mg kg-1 bioavailable Cd) induced OS. Our results suggest that glutathione may act as a signal molecule in a defense response to Cd-induced OS, and mycorrhization may avoid Cd-induced growth inhibition and reduce Cd accumulation in roots. It is discussed that R. intraradices mycorrhization would act as a signal, promoting the generation of a soybean cross tolerance response to Cd pollution, therefore evidencing the potential of this AMF association for bioremediation and encouragement of crop development, particularly because it is an interaction between a worldwide cultivated Cd hyperaccumulator plant and an AMF-HM-accumulator commonly present in soils.

2.
Plant Cell Environ ; 37(7): 1672-87, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24433233

RESUMO

Cadmium (Cd) is a non-essential heavy metal that may be toxic or even lethal to plants as it can be easily taken up by the roots and loaded into the xylem to the leaves. Using soybean roots (Glycine max L.) DM 4800, we have analysed various parameters related to reactive oxygen metabolism and nitric oxide (NO) during a 6 day Cd exposure. A rise in H(2)O(2) and NO, and to a lesser extent O(2)(·-) content was observed after 6 h exposure with a concomitant increase in lipid peroxidation and carbonyl group content. Both oxidative markers were significantly reduced after 24 h. A second, higher wave of O(2)(·-) production was also observed after 72 h of exposure followed by a reduction until the end of the treatment. NOX and glicolate oxidase activity might be involved in the initial Cd-induced reactive oxygen species (ROS) production and it appears that other sources may also participate. The analysis of antioxidative enzymes showed an increase in glutathione-S-transferase activity and in transcript levels and activity of enzymes involved in the ascorbate-glutathione cycle and the NADPH-generating enzymes. These results suggest that soybean is able to respond rapidly to oxidative stress imposed by Cd by improving the availability of NADPH necessary for the ascorbate-glutathione cycle.


Assuntos
Cádmio/toxicidade , Glycine max/metabolismo , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Glutationa/análogos & derivados , Glutationa/metabolismo , Lipídeos/análise , NADP/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Glycine max/efeitos dos fármacos , Glycine max/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA