Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Front Robot AI ; 11: 1331249, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933083

RESUMO

Implementing and deploying advanced technologies are principal in improving manufacturing processes, signifying a transformative stride in the industrial sector. Computer vision plays a crucial innovation role during this technological advancement, demonstrating broad applicability and profound impact across various industrial operations. This pivotal technology is not merely an additive enhancement but a revolutionary approach that redefines quality control, automation, and operational efficiency parameters in manufacturing landscapes. By integrating computer vision, industries are positioned to optimize their current processes significantly and spearhead innovations that could set new standards for future industrial endeavors. However, the integration of computer vision in these contexts necessitates comprehensive training programs for operators, given this advanced system's complexity and abstract nature. Historically, training modalities have grappled with the complexities of understanding concepts as advanced as computer vision. Despite these challenges, computer vision has recently surged to the forefront across various disciplines, attributed to its versatility and superior performance, often matching or exceeding the capabilities of other established technologies. Nonetheless, there is a noticeable knowledge gap among students, particularly in comprehending the application of Artificial Intelligence (AI) within Computer Vision. This disconnect underscores the need for an educational paradigm transcending traditional theoretical instruction. Cultivating a more practical understanding of the symbiotic relationship between AI and computer vision is essential. To address this, the current work proposes a project-based instructional approach to bridge the educational divide. This methodology will enable students to engage directly with the practical aspects of computer vision applications within AI. By guiding students through a hands-on project, they will learn how to effectively utilize a dataset, train an object detection model, and implement it within a microcomputer infrastructure. This immersive experience is intended to bolster theoretical knowledge and provide a practical understanding of deploying AI techniques within computer vision. The main goal is to equip students with a robust skill set that translates into practical acumen, preparing a competent workforce to navigate and innovate in the complex landscape of Industry 4.0. This approach emphasizes the criticality of adapting educational strategies to meet the evolving demands of advanced technological infrastructures. It ensures that emerging professionals are adept at harnessing the potential of transformative tools like computer vision in industrial settings.

2.
Sci Rep ; 14(1): 11214, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755242

RESUMO

The growing expansion of the manufacturing sector, particularly in Mexico, has revealed a spectrum of nearshoring opportunities yet is paralleled by a discernible void in educational tools for various stakeholders, such as engineers, students, and decision-makers. This paper introduces a state-of-the-art framework, incorporating virtual reality (VR) and artificial intelligence (AI) to metamorphose the pedagogy of advanced manufacturing systems. Through a case study focused on the design, production, and evaluation of a robotic platform, the framework endeavors to offer an exhaustive educational experience via an interactive VR environment, encapsulating (1) Robotic platform system design and modeling, enabling users to immerse themselves in the design and simulation of robotic platforms under varied conditions; (2) Virtual manufacturing company, presenting a detailed virtual manufacturing setup to enhance users' comprehension of manufacturing processes and systems, and problem-solving in realistic settings; and (3) Product evaluation, wherein users employ VR to meticulously assess the robotic platform, ensuring optimal functionality and customer satisfaction. This innovative framework melds theoretical acumen with practical application in advanced manufacturing, preparing entities to navigate Mexico's manufacturing sector's vibrant and competitive nearshoring landscape. It creates an immersive environment for understanding modern manufacturing challenges, fostering Mexico's manufacturing sector growth, and maximizing nearshoring opportunities for stakeholders.

3.
J Neural Eng ; 21(2)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38626760

RESUMO

Objective. In recent years, electroencephalogram (EEG)-based brain-computer interfaces (BCIs) applied to inner speech classification have gathered attention for their potential to provide a communication channel for individuals with speech disabilities. However, existing methodologies for this task fall short in achieving acceptable accuracy for real-life implementation. This paper concentrated on exploring the possibility of using inter-trial coherence (ITC) as a feature extraction technique to enhance inner speech classification accuracy in EEG-based BCIs.Approach. To address the objective, this work presents a novel methodology that employs ITC for feature extraction within a complex Morlet time-frequency representation. The study involves a dataset comprising EEG recordings of four different words for ten subjects, with three recording sessions per subject. The extracted features are then classified using k-nearest-neighbors (kNNs) and support vector machine (SVM).Main results. The average classification accuracy achieved using the proposed methodology is 56.08% for kNN and 59.55% for SVM. These results demonstrate comparable or superior performance in comparison to previous works. The exploration of inter-trial phase coherence as a feature extraction technique proves promising for enhancing accuracy in inner speech classification within EEG-based BCIs.Significance. This study contributes to the advancement of EEG-based BCIs for inner speech classification by introducing a feature extraction methodology using ITC. The obtained results, on par or superior to previous works, highlight the potential significance of this approach in improving the accuracy of BCI systems. The exploration of this technique lays the groundwork for further research toward inner speech decoding.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Fala , Humanos , Eletroencefalografia/métodos , Eletroencefalografia/classificação , Masculino , Fala/fisiologia , Feminino , Adulto , Máquina de Vetores de Suporte , Adulto Jovem , Reprodutibilidade dos Testes , Algoritmos
4.
N Engl J Med ; 390(8): 723-735, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38381675

RESUMO

BACKGROUND: Polycythemia vera is a chronic myeloproliferative neoplasm characterized by erythrocytosis. Rusfertide, an injectable peptide mimetic of the master iron regulatory hormone hepcidin, restricts the availability of iron for erythropoiesis. The safety and efficacy of rusfertide in patients with phlebotomy-dependent polycythemia vera are unknown. METHODS: In part 1 of the international, phase 2 REVIVE trial, we enrolled patients in a 28-week dose-finding assessment of rusfertide. Part 2 was a double-blind, randomized withdrawal period in which we assigned patients, in a 1:1 ratio, to receive rusfertide or placebo for 12 weeks. The primary efficacy end point was a response, defined by hematocrit control, absence of phlebotomy, and completion of the trial regimen during part 2. Patient-reported outcomes were assessed by means of the modified Myeloproliferative Neoplasm Symptom Assessment Form (MPN-SAF) patient diary (scores range from 0 to 10, with higher scores indicating greater severity of symptoms). RESULTS: Seventy patients were enrolled in part 1 of the trial, and 59 were assigned to receive rusfertide (30 patients) or placebo (29 patients) in part 2. The estimated mean (±SD) number of phlebotomies per year was 8.7±2.9 during the 28 weeks before the first dose of rusfertide and 0.6±1.0 during part 1 (estimated difference, 8.1 phlebotomies per year). The mean maximum hematocrit was 44.5±2.2% during part 1 as compared with 50.0±5.8% during the 28 weeks before the first dose of rusfertide. During part 2, a response was observed in 60% of the patients who received rusfertide as compared with 17% of those who received placebo (P = 0.002). Between baseline and the end of part 1, rusfertide treatment was associated with a decrease in individual symptom scores on the MPN-SAF in patients with moderate or severe symptoms at baseline. During parts 1 and 2, grade 3 adverse events occurred in 13% of the patients, and none of the patients had a grade 4 or 5 event. Injection-site reactions of grade 1 or 2 in severity were common. CONCLUSIONS: In patients with polycythemia vera, rusfertide treatment was associated with a mean hematocrit of less than 45% during the 28-week dose-finding period, and the percentage of patients with a response during the 12-week randomized withdrawal period was greater with rusfertide than with placebo. (Funded by Protagonist Therapeutics; REVIVE ClinicalTrials.gov number, NCT04057040.).


Assuntos
Hepcidinas , Peptídeos , Policitemia Vera , Humanos , Hematócrito , Hepcidinas/administração & dosagem , Hepcidinas/uso terapêutico , Ferro , Policitemia/diagnóstico , Policitemia/tratamento farmacológico , Policitemia/etiologia , Policitemia Vera/tratamento farmacológico , Policitemia Vera/complicações , Policitemia Vera/diagnóstico , Peptídeos/administração & dosagem , Peptídeos/uso terapêutico , Injeções , Método Duplo-Cego , Fármacos Hematológicos/administração & dosagem , Fármacos Hematológicos/uso terapêutico
5.
Sensors (Basel) ; 23(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067885

RESUMO

Obstructive Sleep Apnea (OSA) is a respiratory disorder characterized by frequent breathing pauses during sleep. The apnea-hypopnea index is a measure used to assess the severity of sleep apnea and the hourly rate of respiratory events. Despite numerous commercial devices available for apnea diagnosis and early detection, accessibility remains challenging for the general population, leading to lengthy wait times in sleep clinics. Consequently, research on monitoring and predicting OSA has surged. This comprehensive paper reviews devices, emphasizing distinctions among representative apnea devices and technologies for home detection of OSA. The collected articles are analyzed to present a clear discussion. Each article is evaluated according to diagnostic elements, the implemented automation level, and the derived level of evidence and quality rating. The findings indicate that the critical variables for monitoring sleep behavior include oxygen saturation (oximetry), body position, respiratory effort, and respiratory flow. Also, the prevalent trend is the development of level IV devices, measuring one or two signals and supported by prediction software. Noteworthy methods showcasing optimal results involve neural networks, deep learning, and regression modeling, achieving an accuracy of approximately 99%.


Assuntos
Síndromes da Apneia do Sono , Apneia Obstrutiva do Sono , Humanos , Polissonografia/métodos , Apneia Obstrutiva do Sono/diagnóstico , Sono , Oximetria/métodos
6.
Sensors (Basel) ; 23(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38067942

RESUMO

Domotics (Home Automation) aims to improve the quality of life of people by integrating intelligent systems within inhabitable spaces. While traditionally associated with smart home systems, these technologies have potential for User Experience (UX) research. By emulating environments to test products and services, and integrating non-invasive user monitoring tools for emotion recognition, an objective UX evaluation can be performed. To achieve this objective, a testing booth was built and instrumented with devices based on KNX, an international standard for home automation, to conduct experiments and ensure replicability. A framework was designed based on Python to synchronize KNX systems with emotion recognition tools; the synchronization of these data allows finding patterns during the interaction process. To evaluate this framework, an experiment was conducted in a simulated laundry room within the testing booth to analyze the emotional responses of participants while interacting with prototypes of new detergent bottles. Emotional responses were contrasted with traditional questionnaires to determine the viability of using non-invasive methods. Using emulated environments alongside non-invasive monitoring tools allowed an immersive experience for participants. These results indicated that the testing booth can be implemented for a robust UX evaluation methodology.


Assuntos
Emoções , Qualidade de Vida , Humanos , Tecnologia , Reconhecimento Psicológico , Comunicação
7.
Sensors (Basel) ; 23(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005448

RESUMO

Current weather monitoring systems often remain out of reach for small-scale users and local communities due to their high costs and complexity. This paper addresses this significant issue by introducing a cost-effective, easy-to-use local weather station. Utilizing low-cost sensors, this weather station is a pivotal tool in making environmental monitoring more accessible and user-friendly, particularly for those with limited resources. It offers efficient in-site measurements of various environmental parameters, such as temperature, relative humidity, atmospheric pressure, carbon dioxide concentration, and particulate matter, including PM 1, PM 2.5, and PM 10. The findings demonstrate the station's capability to monitor these variables remotely and provide forecasts with a high degree of accuracy, displaying an error margin of just 0.67%. Furthermore, the station's use of the Autoregressive Integrated Moving Average (ARIMA) model enables short-term, reliable forecasts crucial for applications in agriculture, transportation, and air quality monitoring. Furthermore, the weather station's open-source nature significantly enhances environmental monitoring accessibility for smaller users and encourages broader public data sharing. With this approach, crucial in addressing climate change challenges, the station empowers communities to make informed decisions based on real-time data. In designing and developing this low-cost, efficient monitoring system, this work provides a valuable blueprint for future advancements in environmental technologies, emphasizing sustainability. The proposed automatic weather station not only offers an economical solution for environmental monitoring but also features a user-friendly interface for seamless data communication between the sensor platform and end users. This system ensures the transmission of data through various web-based platforms, catering to users with diverse technical backgrounds. Furthermore, by leveraging historical data through the ARIMA model, the station enhances its utility in providing short-term forecasts and supporting critical decision-making processes across different sectors.

8.
ISA Trans ; 141: 276-287, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37507326

RESUMO

Motion restrictions in robotic devices may introduce complex requirements for any closed-loop control design, mainly when the robot joints must track reference trajectories that force the end-effector to perform planned motions. This study summarizes the comprehensive technical design of an adaptive state feedback controller for multi-link robotic manipulators that consider the effect of position and velocity restrictions on the tracking trajectory control approach. The proposed design is less conservative than other methods because of the explicit inclusion of state restrictions in the control gain dynamics. A logarithm barrier Lyapunov function class supports the design of the adaptive gain for the manipulator. Sufficient conditions based on a Riccati equation simplify the implementation of the adaptive controller with gains depending on the distance between the current state and the restriction sets. Numerical simulations show the advantages of the proposed controller with adaptive gains concerning a similar adaptive controller that does not consider the restrictions and a proportional-integral-derivative form. An implementation for the motion control of a robotic arm is presented to demonstrate the development by implementing the proposed gain, which confirms the suggested improvements enforced by the proposed controller. The performed comparison shows the advantages of the suggested adaptive gain control form, inducing better tracking of reference trajectories and smaller control energy applications.

9.
Life (Basel) ; 13(4)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37109560

RESUMO

Motor neuron diseases (MNDs) are a group of chronic neurological disorders characterized by the progressive failure of the motor system. Currently, these disorders do not have a definitive treatment; therefore, it is of huge importance to propose new and more advanced diagnoses and treatment options for MNDs. Nowadays, artificial intelligence is being applied to solve several real-life problems in different areas, including healthcare. It has shown great potential to accelerate the understanding and management of many health disorders, including neurological ones. Therefore, the main objective of this work is to offer a review of the most important research that has been done on the application of artificial intelligence models for analyzing motor disorders. This review includes a general description of the most commonly used AI algorithms and their usage in MND diagnosis, prognosis, and treatment. Finally, we highlight the main issues that must be overcome to take full advantage of what AI can offer us when dealing with MNDs.

10.
Oncotarget ; 14: 1-13, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36634212

RESUMO

Overexpression of CD74, a type II transmembrane glycoprotein involved in MHC class II antigen presentation, has been reported in many B-cell non-Hodgkin lymphomas (NHLs) and in multiple myeloma (MM). STRO-001 is a site-specific, predominantly single-species antibody-drug conjugate (ADC) that targets CD74 and has demonstrated efficacy in xenograft models of MM and tolerability in non-human primates. Here we report results of preclinical studies designed to elucidate the potential role of STRO-001 in B-cell NHL. STRO-001 displayed nanomolar and sub-nanomolar cytotoxicity in 88% (15/17) of cancer cell lines tested. STRO-001 showed potent cytotoxicity on proliferating B cells while limited cytotoxicity was observed on naïve human B cells. A linear dose-response relationship was demonstrated in vivo for DLBCL models SU-DHL-6 and U2932. Tumor regression was induced at doses less than 5 mg/kg, while maximal activity with complete cures were observed starting at 10 mg/kg. In MCL Mino and Jeko-1 xenografts, STRO-001 starting at 3 mg/kg significantly prolonged survival or induced tumor regression, respectively, leading to tumor eradication in both models. In summary, high CD74 expression levels in tumors, nanomolar cellular potency, and significant anti-tumor in DLBCL and MCL xenograft models support the ongoing clinical study of STRO-001 in patients with B-cell NHL.


Assuntos
Antineoplásicos , Imunoconjugados , Linfoma não Hodgkin , Mieloma Múltiplo , Animais , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Mieloma Múltiplo/patologia , Linfoma não Hodgkin/tratamento farmacológico , Linhagem Celular Tumoral
13.
Front Hum Neurosci ; 16: 867377, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754778

RESUMO

Hands-free interfaces are essential to people with limited mobility for interacting with biomedical or electronic devices. However, there are not enough sensing platforms that quickly tailor the interface to these users with disabilities. Thus, this article proposes to create a sensing platform that could be used by patients with mobility impairments to manipulate electronic devices, thereby their independence will be increased. Hence, a new sensing scheme is developed by using three hands-free signals as inputs: voice commands, head movements, and eye gestures. These signals are obtained by using non-invasive sensors: a microphone for the speech commands, an accelerometer to detect inertial head movements, and an infrared oculography to register eye gestures. These signals are processed and received as the user's commands by an output unit, which provides several communication ports for sending control signals to other devices. The interaction methods are intuitive and could extend boundaries for people with disabilities to manipulate local or remote digital systems. As a study case, two volunteers with severe disabilities used the sensing platform to steer a power wheelchair. Participants performed 15 common skills for wheelchair users and their capacities were evaluated according to a standard test. By using the head control they obtained 93.3 and 86.6%, respectively for volunteers A and B; meanwhile, by using the voice control they obtained 63.3 and 66.6%, respectively. These results show that the end-users achieved high performance by developing most of the skills by using the head movements interface. On the contrary, the users were not able to develop most of the skills by using voice control. These results showed valuable information for tailoring the sensing platform according to the end-user needs.

14.
Front Hum Neurosci ; 16: 867281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558735

RESUMO

Currently, the most used method to measure brain activity under a non-invasive procedure is the electroencephalogram (EEG). This is because of its high temporal resolution, ease of use, and safety. These signals can be used under a Brain Computer Interface (BCI) framework, which can be implemented to provide a new communication channel to people that are unable to speak due to motor disabilities or other neurological diseases. Nevertheless, EEG-based BCI systems have presented challenges to be implemented in real life situations for imagined speech recognition due to the difficulty to interpret EEG signals because of their low signal-to-noise ratio (SNR). As consequence, in order to help the researcher make a wise decision when approaching this problem, we offer a review article that sums the main findings of the most relevant studies on this subject since 2009. This review focuses mainly on the pre-processing, feature extraction, and classification techniques used by several authors, as well as the target vocabulary. Furthermore, we propose ideas that may be useful for future work in order to achieve a practical application of EEG-based BCI systems toward imagined speech decoding.

15.
Sensors (Basel) ; 22(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35161783

RESUMO

The lack of interest of children at school is one of the biggest problems that Mexican education faces. Two important factors causing this lack of interest are the predominant methodology used in Mexican schools and the technology as a barrier for attention. The methodology that institutions have followed has become an issue because of its very traditional approach, with the professor giving all the theoretical material to the students while they listen and memorize the contents, and, if we add the issue of the growing access to technological devices for students, children carrying a phone are more likely to be distracted. This study aims to integrate technology through assistive robots as a beneficial tool for educators, in order to improve the attention span of students by making the learning process in multiple areas of the Mexican curriculum more dynamic, therefore obtaining better results. To prove this, four different approaches were implemented; three in elementary schools and one in higher education: the LEGO® robotic kit and the NAO robot for STEM (science, technology, engineering, and mathematics) teaching, the NAO robot for physical education (PE), and the PhantomX Hexapod, respectively. Each of these technological approaches was applied by considering both control and experimental groups, in order to compare the data and provide conclusions. Finally, this study proves that the attention span is indeed improved as a result of implementing robotic platforms during the teaching process, allowing the children to become more motivated during their PE class and become more proactive and retain more information during their STEM classes.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Criança , Países Desenvolvidos , Humanos , Educação Física e Treinamento , Tecnologia
16.
Sensors (Basel) ; 21(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34883868

RESUMO

Depression is a common mental illness characterized by sadness, lack of interest, or pleasure. According to the DSM-5, there are nine symptoms, from which an individual must present 4 or 5 in the last two weeks to fulfill the diagnosis criteria of depression. Nevertheless, the common methods that health care professionals use to assess and monitor depression symptoms are face-to-face questionnaires leading to time-consuming or expensive methods. On the other hand, smart homes can monitor householders' health through smart devices such as smartphones, wearables, cameras, or voice assistants connected to the home. Although the depression disorders at smart homes are commonly oriented to the senior sector, depression affects all of us. Therefore, even though an expert needs to diagnose the depression disorder, questionnaires as the PHQ-9 help spot any depressive symptomatology as a pre-diagnosis. Thus, this paper proposes a three-step framework; the first step assesses the nine questions to the end-user through ALEXA or a gamified HMI. Then, a fuzzy logic decision system considers three actions based on the nine responses. Finally, the last step considers these three actions: continue monitoring through Alexa and the HMI, suggest specialist referral, and mandatory specialist referral.


Assuntos
Questionário de Saúde do Paciente , Saúde da População , Depressão/diagnóstico , Manual Diagnóstico e Estatístico de Transtornos Mentais , Lógica Fuzzy , Humanos , Inquéritos e Questionários
17.
Sensors (Basel) ; 21(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34770657

RESUMO

Automobile security became an essential theme over the last years, and some automakers invested much money for collision avoidance systems, but personalization of their driving systems based on the user's behavior was not explored in detail. Furthermore, efficiency gains could be had with tailored systems. In Mexico, 80% of automobile accidents are caused by human beings; the remaining 20% are related to other issues such as mechanical problems. Thus, 80% represents a significant opportunity to improve safety and explore driving efficiency gains. Moreover, when driving aggressively, it could be connected with mental health as a post-traumatic stress disorder. This paper proposes a Tailored Collision Mitigation Braking System, which evaluates the driver's personality driving treats through signal detection theory to create a cognitive map that understands the driving personality of the driver. In this way, aggressive driving can be detected; the system is then trained to recognize the personality trait of the driver and select the appropriate stimuli to achieve the optimal driving output. As a result, when aggressive driving is detected continuously, an automatic alert could be sent to the health specialists regarding particular risky behavior linked with mental problems or drug consumption. Thus, the driving profile test could also be used as a detector for health problems.


Assuntos
Condução de Veículo , Automóveis , Acidentes de Trânsito , Humanos , México , Personalidade
18.
Cancers (Basel) ; 13(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34638496

RESUMO

In 50-60% of cases, systemic anaplastic large cell lymphoma (ALCL) is characterized by the t(2;5)(p23;q35) or one of its variants, considered to be causative for anaplastic lymphoma kinase (ALK)-positive (ALK+) ALCL. Key pathogenic events in ALK-negative (ALK-) ALCL are less well defined. We have previously shown that deregulation of oncogenic genes surrounding the chromosomal breakpoints on 2p and 5q is a unifying feature of both ALK+ and ALK- ALCL and predisposes for occurrence of t(2;5). Here, we report that the invariant chain of the MHC-II complex CD74 or li, which is encoded on 5q32, can act as signaling molecule, and whose expression in lymphoid cells is usually restricted to B cells, is aberrantly expressed in T cell-derived ALCL. Accordingly, ALCL shows an altered DNA methylation pattern of the CD74 locus compared to benign T cells. Functionally, CD74 ligation induces cell death of ALCL cells. Furthermore, CD74 engagement enhances the cytotoxic effects of conventional chemotherapeutics in ALCL cell lines, as well as the action of the ALK-inhibitor crizotinib in ALK+ ALCL or of CD95 death-receptor signaling in ALK- ALCL. Additionally, a subset of ALCL cases expresses the proto-oncogene MET, which can form signaling complexes together with CD74. Finally, we demonstrate that the CD74-targeting antibody-drug conjugate STRO-001 efficiently and specifically kills CD74-positive ALCL cell lines in vitro. Taken together, these findings enabled us to demonstrate aberrant CD74-expression in ALCL cells, which might serve as tool for the development of new treatment strategies for this lymphoma entity.

19.
Sensors (Basel) ; 21(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34300396

RESUMO

Nowadays, the concept of Industry 4.0 aims to improve factories' competitiveness. Usually, manufacturing production is guided by standards to segment and distribute its processes and implementations. However, industry 4.0 requires innovative proposals for disruptive technologies that engage the entire production process in factories, not just a partial improvement. One of these disruptive technologies is the Digital Twin (DT). This advanced virtual model runs in real-time and can predict, detect, and classify normal and abnormal operating conditions in factory processes. The Automation Pyramid (AP) is a conceptual element that enables the efficient distribution and connection of different actuators in enterprises, from the shop floor to the decision-making levels. When a DT is deployed into a manufacturing system, generally, the DT focuses on the low-level that is named field level, which includes the physical devices such as controllers, sensors, and so on. Thus, the partial automation based on the DT is accomplished, and the information between all manufacturing stages could be decremented. Hence, to achieve a complete improvement of the manufacturing system, all the automation pyramid levels must be included in the DT concept. An artificial intelligent management system could create an interconnection between them that can manage the information. As a result, this paper proposed a complete DT structure covering all automation pyramid stages using Artificial Intelligence (AI) to model each stage of the AP based on the Digital Twin concept. This work proposes a virtual model for each level of the traditional AP and the interactions among them to flow and control information efficiently. Therefore, the proposed model is a valuable tool in improving all levels of an industrial process. In addition, It is presented a case study where the DT concept for modular workstations underpins the development of technologies within the framework of the Automation Pyramid model is implemented into a didactic manufacturing system.


Assuntos
Inteligência Artificial , Indústrias , Automação , Tecnologia
20.
Sensors (Basel) ; 19(14)2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31337118

RESUMO

Artificial neural networks (ANN) are widely used to classify high non-linear systems by using a set of input/output data. Moreover, they are trained using several optimization methodologies and this paper presents a novel algorithm for training ANN through an earthquake optimization method. Usually, gradient optimization method is implemented for the training process, with perhaps the large number of iterations leading to slow convergence, and not always achieving the optimal solution. Since metaheuristic optimization methods deal with searching for weight values in a broad optimization space, the training computational effort is reduced and ensures an optimal solution. This work shows an efficient training process that is a suitable solution for detection of mobile phone usage while driving. The main advantage of training ANN using the Earthquake Algorithm (EA) lies in its versatility to search in a fine or aggressive way, which extends its field of application. Additionally, a basic example of a linear classification is illustrated using the proposal-training method, so the number of applications could be expanded to nano-sensors, such as reversible logic circuit synthesis in which a genetic algorithm had been implemented. The fine search is important for the studied logic gate emulation due to the small searching areas for the linear separation, also demonstrating the convergence capabilities of the algorithm. Experimental results validate the proposed method for smart mobile phone applications that also can be applied for optimization applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...