Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Cureus ; 15(11): e48735, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38094526

RESUMO

Background Clostridioides difficile infection (CDI) is a major cause of diarrhea in hospitalized adult patients. This study aims to evaluate the clinical characteristics, clinical cure, recurrence and mortality in patients with CDI treated with either fidaxomicin or vancomycin. Methods A retrospective case-control study was conducted on patients with CDI treated with either fidaxomicin or vancomycin at a hospital from January 2019 to March 2022. Results We assessed 140 patients with CDI episodes, 70 patients treated with fidaxomicin and 70 with vancomycin. Seventy (50%) were male. Median age was 70 years old (IQR: 56-81). Fidaxomicin group had more recurrent CDI episodes within six months (59% vs 11%, p ≤ 0.001), more severity (43% vs 16%, p ≤ 0.001) and less treatment response (84% vs 100%, p ≤ 0.002) compared with vancomycin group. Recurrence and mortality rates in the follow-up period did not differ in both groups. Conclusions Our study found fidaxomicin treatment had worse outcomes due to restricted usage, potentially impacting its effectiveness in CDI. This finding is especially significant for patients with severe or recurrent CDI, as prescribing of the drug was limited until May 2022 in Spain with the lifting of this restriction, further research is necessary to better understand the potential benefits of fidaxomicin in treating CDI.

2.
PLoS One ; 18(10): e0292558, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37862296

RESUMO

Smart homes represent the complement of various automation technologies that together make up a network of devices facilitating the daily tasks of residents. These technologies are being studied for their application from different sectors, including the projection of their use to improve energy consumption planning and health care management. However, technology adoption depends on social awareness within the scope of cognitive advantages and innovations compared to perceived risk because although there are multiple benefits, potential users express fears related to the loss of autonomy and security. This study carries out a systematic literature review based on PRISMA in order to analyze research trends and literary evolution in the technological adoption of smart homes, considering the main theories and variables applied by the community. In proposing a research agenda in accordance with the identified gaps and the growing and emerging themes of the object of study, it is worth highlighting the growing interest in the subject, both for the present and its development in the future. Until now, adoption factors have been attributed more to the technological acceptance model and the diffusion of innovation theory, adopting components of the Theory of Planned Behavior; therefore, in several cases, the attributes of different theories are merged to adapt to the needs of each researcher, promoting the creation of empirical and extended models.


Assuntos
Pesquisadores , Tecnologia , Humanos , Automação
3.
Polymers (Basel) ; 15(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37631515

RESUMO

Polylactic acid (PLA) is a biodegradable polymer that can replace petroleum-based polymers and is widely used in material extrusion additive manufacturing (AM). The reprocessing of PLA leads to a downcycling of its properties, so strategies are being sought to counteract this effect, such as blending with virgin material or creating nanocomposites. Thus, two sets of nanocomposites based respectively on virgin PLA and a blend of PLA and reprocessed PLA (rPLA) with the addition of 0, 3, and 7 wt% of titanium dioxide nanoparticles (TiO2) were created via a double screw extruder system. All blends were used for material extrusion for 3D printing directly from pellets without difficulty. Scanning electron micrographs of fractured samples' surfaces indicate that the nanoparticles gathered in agglomerations in some blends, which were well dispersed in the polymer matrix. The thermal stability and degree of crystallinity for every set of nanocomposites have a rising tendency with increasing nanoparticle concentration. The glass transition and melting temperatures of PLA/TiO2 and PLA/rPLA/TiO2 do not differ much. Tensile testing showed that although reprocessed material implies a detriment to the mechanical properties, in the specimens with 7% nano-TiO2, this effect is counteracted, reaching values like those of virgin PLA.

5.
Polymers (Basel) ; 15(9)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37177311

RESUMO

This paper studies the thermal, morphological, and mechanical properties of 3D-printed polylactic acid (PLA) blends of virgin and recycled material in the following proportions: 100/0, 25/75, 50/50, and 75/25, respectively. Real waste, used as recycled content, was shredded and sorted by size without a washing step. Regular dog-bone specimens were 3D printed from filaments, manufactured in a single screw extruder. Thermogravimetric analysis indicated that adding PLA debris to raw material did not significantly impact the thermal stability of the 3D-printed samples and showed that virgin and recycled PLA degraded at almost the same temperature. Differential scanning calorimetry revealed a significant reduction in crystallinity with increasing recycled content. Scanning electron microscopy showed a more homogenous structure for specimens from 100% pure PLA, as well as a more heterogeneous one for PLA blends. The tensile strength of the PLA blends increased by adding more recycled material, from 44.20 ± 2.18 MPa for primary PLA to 52.61 ± 2.28 MPa for the blend with the highest secondary PLA content. However, this study suggests that the mechanical properties of the reprocessed parts and their basic association are unique compared with those made up of virgin material.

6.
J Environ Sci (China) ; 126: 633-643, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503789

RESUMO

The present study evaluates ground-based downward surface shortwave radiation (Rs) over the coastal region of Alicante (Southeastern Spain). Hourly measurements collected over the eleven-year period 2010-2020 are used. Two weather stations located over the region capital, Alicante, have been selected as representative of urban and suburban typologies. Two additional weather stations far from the city have been selected representing rural typologies. Rs is significantly reduced over the urban station during the morning hours within the winter season compared to the observations recorded over the suburban and rural stations, with a global mean difference of -81 and -120 W/m2 at 10 LT, respectively. However, no significant differences are obtained during the midday sun, with a global mean difference of -20 W/m2 between the urban and rural stations. With the aim of explaining these differences, the current paper investigates the relationship between Rs and different air pollutants: NOx, SO2, and fine particulate matter (PM2.5 and PM10) as well as the wind field measured at the urban and suburban stations. The results found in this work point towards a close relationship between Rs and NOx concentrations annual cycles, which are also influenced by the prevailing wind circulations observed over the study area. A global mean NOx concentration of 107 µg/m3 is observed over the urban station at 10 LT during the winter season. In contrast, these high concentrations are significantly reduced over the suburban station, with global mean value of 40 µg/m3 at 10 LT, for this period of the year.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Energia Solar , Material Particulado , Tempo (Meteorologia)
7.
ACS Appl Mater Interfaces ; 15(1): 1808-1816, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36534002

RESUMO

Herein we show that dispersing inorganic cesium lead bromide (CsPbBr3) perovskite quantum dots (QDs) in optical quality films, possessing an accessible and controlled pore size distribution, gives rise to fluorescent materials with a controlled and highly sensitive response to ambient changes. A scaffold-based synthesis approach is employed to obtain ligand-free QDs, whose pristine surface endows them with high sensitivity to the presence of different vapors in their vicinity. At the same time, the void network of the host offers a means to gradually expose the embedded QDs to such vapors. Under these conditions, the luminescent response of the QDs is mediated by the mesostructure of the matrix, which determines the rate at which vapor molecules will adsorb onto the pore walls and, eventually, condensate, filling the void space. With luminescence quantum yields as high as 60%, scaffold-supported ligand-free perovskite nanocrystals display intense photoemission signals over the whole process, as well as high photo- and chemical stability, which allows illuminating them for long periods of time and recovering the original response upon desorption of the condensed phase. The results herein presented open a new route to explore the application of perovskite QD-based materials in sensing.

8.
Polymers (Basel) ; 16(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38201725

RESUMO

Many studies assess the suitability of fiber-reinforced polymer composites in additive manufacturing. However, the influence of the fiber length distribution on the mechanical and functional properties of printed parts using these technologies has not been addressed so far. Hence, in this work we compare different composites based on Acrylonitrile Styrene Acrylate (ASA) and carbon fiber (CF) suitable for large format additive manufacturing (LFAM) technologies based on fused granular fabrication (FGF). We study in detail the influence of the CF size on the processing and final properties of these materials. Better reinforcements were achieved with longer CF, reaching Young's modulus and tensile strength values of 7500 MPa and 75 MPa, respectively, for printed specimens. However, the longer CF also worsened the interlayer adhesion of ASA to a greater extent. The composites also exhibited electrical properties characteristic of electrostatic dissipative (ESD) materials (105-1010 Ω/sq) and low coefficients of thermal expansion below 15 µm/m·°C. These properties are governed by the CF length distribution, so this variable may be used to tune these values. These composites are promising candidates for the design of elements with enhanced mechanical and functional properties for ESD protection elements or molds, so the products can be manufactured on demand.

9.
Polymers (Basel) ; 14(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36501632

RESUMO

Polymer nanocomposites (PNCs) attract the attention of researchers and industry because of their potential properties in widespread fields. Specifically, electrically conductive and semiconductor PNCs are gaining interest as promising materials for biomedical, optoelectronic and sensing applications, among others. Here, metallic nanoparticles (NPs) are extensively used as nanoadditives to increase the electrical conductivity of mere acrylic resin. As the in situ formation of metallic NPs within the acrylic matrix is hindered by the solubility of the NP precursors, we propose a method to increase the density of Ag NPs by using different intermediate solvents, allowing preparation of Ag/acrylic resin nanocomposites with improved electrical behaviour. We fabricated 3D structures using stereolithography (SLA) by dissolving different quantities of metal precursor (AgClO4) in methanol and in N,N-dimethylformamide (DMF) and adding these solutions to the acrylic resin. The high density of Ag NPs obtained notably increases the electrical conductivity of the nanocomposites, reaching the semiconductor regime. We analysed the effect of the auxiliary solvents during the printing process and the implications on the mechanical properties and the degree of cure of the fabricated nanocomposites. The good quality of the materials prepared by this method turn these nanocomposites into promising candidates for electronic applications.

10.
Polymers (Basel) ; 14(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36501650

RESUMO

In the new transformation of 'Industry 4.0', additive manufacturing technologies have become one of the fastest developed industries, with polylactic acid (PLA) playing a significant role. However, there is an increasing amount of garbage generated during the printing process and after prototypes or end-of-life parts. Re-3D printing is one way to recycle PLA waste from fused filament fabrication. To do this process successfully, the properties of the waste mixture should be known. Previous studies have found that PLA degrades hydrolytically, but the time at which this process occurs for 3D printed products is not specified. This work aims to establish the baseline of the degradation kinetics of 3D printed PLA products to predict the service time until which these properties are retained. To achieve this, 3D printed specimens were thermally and hydrothermally aged during several time intervals. Thermal and mechanical properties were also determined. This study reveals that tensile strength decreases after 1344 h of hydrothermal ageing, simulating 1.5-2.5 years of real service time. PLA therefore has the same thermo-mechanical properties before reaching 1.5-years of age, so it could be recycled.

11.
Materials (Basel) ; 15(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36295439

RESUMO

AlxIn1-xN ternary semiconductors have attracted much interest for application in photovoltaic devices. Here, we compare the material quality of AlxIn1-xN layers deposited on Si with different crystallographic orientations, (100) and (111), via radio-frequency (RF) sputtering. To modulate their Al content, the Al RF power was varied from 0 to 225 W, whereas the In RF power and deposition temperature were fixed at 30 W and 300 °C, respectively. X-ray diffraction measurements reveal a c-axis-oriented wurtzite structure with no phase separation regardless of the Al content (x = 0-0.50), which increases with the Al power supply. The surface morphology of the AlxIn1-xN layers improves with increasing Al content (the root-mean-square roughness decreases from ≈12 to 2.5 nm), and it is similar for samples grown on both Si substrates. The amorphous layer (~2.5 nm thick) found at the interface with the substrates explains the weak influence of their orientation on the properties of the AlxIn1-xN films. Simultaneously grown AlxIn1-xN-on-sapphire samples point to a residual n-type carrier concentration in the 1020-1021 cm-3 range. The optical band gap energy of these layers evolves from 1.75 to 2.56 eV with the increase in the Al. PL measurements of AlxIn1-xN show a blue shift in the peak emission when adding the Al, as expected. We also observe an increase in the FWHM of the main peak and a decrease in the integrated emission with the Al content in room-temperature PL measurements. In general, the material quality of the AlxIn1-xN films on Si is similar for both crystallographic orientations.

12.
Polymers (Basel) ; 14(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35956730

RESUMO

Fused filament fabrication (FFF) is gaining attention as an efficient way to create parts and replacements on demand using thermoplastics. This technology requires the development of new materials with a reliable printability that satisfies the requirement of final parts. In this context, a series of composites based on acrylonitrile styrene acrylate (ASA) reinforced with basalt fiber (BF) are reported in this work. First, several surface modification treatments are applied onto the BF to increase their compatibility with the ASA matrix. Then, once the best treatment is identified, the mechanical properties, coefficient of thermal expansion (CTE) and warping distortion of the different specimens designed and prepared by FFF are studied. It was found that the silanized BF is appropriate for an adequate printing, obtaining composites with higher stiffness, tensile strength, low CTE and a significant reduction in part distortion. These composites are of potential interest in the design and manufacturing of final products by FFF, as they show much lower CTE values than pure ASA, which is essential to successfully fabricate large objects using this technique.

13.
Sensors (Basel) ; 22(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35808283

RESUMO

The Internet of things concept empowered by low-cost sensor technologies and headless computers has upscaled the applicability of vibration monitoring systems in recent years. Raspberry Shake devices are among those systems, constituting a crowdsourcing framework and forming a worldwide seismic network of over a thousand nodes. While Raspberry Shake devices have been proven to densify seismograph arrays efficiently, their potential for structural health monitoring (SHM) is still unknown and is open to discovery. This paper presents recent findings from existing buildings located in Bucharest (Romania) equipped with Raspberry Shake 4D (RS4D) devices, whose signal recorded under multiple seismic events has been analyzed using different modal identification algorithms. The obtained results show that RS4D modules can capture the building vibration behavior despite the short-duration and low-amplitude excitation sources. Based on 15 RS4D device readings from five different multistorey buildings, the results do not indicate damage in terms of modal frequency decay. The findings of this research propose a baseline for future seismic events that can track the changes in vibration characteristics as a consequence of future strong earthquakes. In summary, this research presents multi-device, multi-testbed, and multi-algorithm evidence on the feasibility of RS4D modules as SHM instruments, which are yet to be explored in earthquake engineering.


Assuntos
Terremotos , Rubus , Algoritmos , Movimento (Física) , Vibração
14.
J Cardiol Cases ; 26(4): 315-316, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35812801
15.
Sensors (Basel) ; 22(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35684781

RESUMO

Many previous research studies have shown how local and even regional earthquakes can significantly affect the release of radon in the soil. The aim of this work is to investigate the relationship between radon measurements and the daily seismic activity rate and develop a methodology that allows estimating the seismic activity rate using only radon measurements. To carry out this study, the earthquake catalogue of the Vrancea region (Romania) has been used to estimate the daily seismic activity rate during a given time period, in which radon measurements were also recorded, from January 2016 to September 2020. The Vrancea zone represents the most active seismic zone in Europe and is located on the eastern edge of the strongly bent Carpathian arc. In the case of the radon measurements, seasonal behaviours and linear trends due to non-seismic factors have been identified and subsequently removed. The discrete wavelet transform has been used to analyse the radon signal at two different scales: long and short periods. From the analysis carried out on a long-period scale, an approximate linear relationship has been obtained between the radon series and the daily seismic activity rate, which provides insights into the behaviour of the seismic activity in the study region with only the radon information. In addition, the study reveals certain characteristics that could be used as precursors of earthquakes at different scales: weeks in the case of the estimated daily seismic activity rate, and days in the case of the short-period signal obtained by the wavelet analysis. The results obtained for this region allow us to hope that the analysis of the radon time series can become an effective complement to the conventional seismic analysis used in operational earthquake forecasting.


Assuntos
Terremotos , Radônio , Poluentes Radioativos do Solo , Humanos , Romênia , Solo , Poluentes Radioativos do Solo/análise
16.
ACS Appl Mater Interfaces ; 14(17): 20023-20031, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35438478

RESUMO

In this work, we present a series of porous, honeycomb-patterned polymer films containing CsPbBr3 perovskite nanocrystals as light emitters prepared by the breath figure approach. Microscopy analysis of the topography and composition of the material evidence that the CsPbBr3 nanocrystals are homogeneously distributed within the polymer matrix but preferably confined inside the pores due to the fabrication process. The optical properties of the CsPbBr3 nanocrystals remain unaltered after the film formation, proving that they are stable inside the polystyrene matrix, which protects them from degradation by environmental factors. Moreover, these surfaces present highly hydrophobic behavior due to their high porosity and defined micropatterning, which is in agreement with the Cassie-Baxter model. This is evidenced by performing a proof-of-concept coating on top of 3D-printed LED lenses, conferring the material with self-cleaning properties, while the CsPbBr3 nanocrystals embedded inside the polymeric matrix maintain their luminescent behavior.

17.
Polymers (Basel) ; 14(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35335499

RESUMO

Additive Manufacturing (AM) offers remarkable advantages in relation to traditional methods used to obtain solid structures, such as the capability to obtain customized complex geometries adapted to individual requirements. The design of novel nanocomposites suitable for AM is an excellent strategy to widen the application field of these techniques. In this work, we report on the fabrication of metal/polymer nanocomposites with enhanced optical/electrical behaviour for stereolithography (SLA). In particular, we analyse the in situ generation of Ag nanoparticles (NPs) from Ag precursors (AgNO3 and AgClO4) within acrylic resins via SLA. Transmission electron microscopy (TEM) analysis confirmed the formation of Ag NPs smaller than 5 nm in all nanocomposites, providing optical activity to the materials. A high density of Ag NPs with a good distribution through the material for the larger concentration of AgClO4 precursor tested was observed, in contrast to the isolated agglomerations found when the precursor amount was reduced to 0.1%. A significant reduction in the electrical resistivity up to four orders of magnitude was found for this material compared to the unfilled resin. However, consumption of part of the photoinitiator in the formation process of the Ag NPs contributed to a reduction in the polymerization degree of the resin and, consequently, degraded the mechanical properties of the nanocomposites. Experiments with longer curing times showed that, for the higher AgClO4 concentrations tested, post-curing times of 300 min allowed an 80% degree of polymerization to be achieved. These conditions turned these materials into promising candidates to obtain solid structures with multifunctional properties.

18.
Nanomaterials (Basel) ; 12(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35159686

RESUMO

The smart engineering of novel semiconductor devices relies on the development of optimized functional materials suitable for the design of improved systems with advanced capabilities aside from better efficiencies. Thereby, the characterization of these materials at the highest level attainable is crucial for leading a proper understanding of their working principle. Due to the striking effect of atomic features on the behavior of semiconductor quantum- and nanostructures, scanning transmission electron microscopy (STEM) tools have been broadly employed for their characterization. Indeed, STEM provides a manifold characterization tool achieving insights on, not only the atomic structure and chemical composition of the analyzed materials, but also probing internal electric fields, plasmonic oscillations, light emission, band gap determination, electric field measurements, and many other properties. The emergence of new detectors and novel instrumental designs allowing the simultaneous collection of several signals render the perfect playground for the development of highly customized experiments specifically designed for the required analyses. This paper presents some of the most useful STEM techniques and several strategies and methodologies applied to address the specific analysis on semiconductors. STEM imaging, spectroscopies, 4D-STEM (in particular DPC), and in situ STEM are summarized, showing their potential use for the characterization of semiconductor nanostructured materials through recent reported studies.

19.
J Cardiol Cases ; 26(1): 24-27, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35190758

RESUMO

In this article we describe two cases that presented with persistent fever and a hyperinflammatory state in association with severe acute respiratory syndrome-coronavirus-2 infection with various negative reverse transcription-polymerase chain reaction results. These cases subsequently developed myocarditis with cardiogenic shock that required vasoactive drugs and had a good response to corticosteroid treatment. All cases met criteria for a definitive case of multisystemic inflammatory syndrome in adults, a recently described entity associated with coronavirus disease 2019, which has a good response to immunomodulators and a good prognosis in most cases. .

20.
ACS Appl Polym Mater ; 4(2): 1225-1233, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35187495

RESUMO

Cork powder received as a byproduct from local industries is valorized through the development of composite materials suitable for fused deposition modeling (FDM). For this purpose, a polymeric matrix of acrylonitrile-styrene-butyl acrylate (ASA) is used due to its good mechanical resistance and weather resistance properties. Prior to the manufacturing of the composites, the cork particles are characterized and modified by surface polymerization, creating a layer of poly(butyl acrylate) (PBA). Then, filaments for FDM are prepared by solvent casting and extrusion from ASA and composites with unmodified cork (ASA + C) and PBA-modified cork (ASA + Cm). PBA is one of the polymers present in the structure of ASA, which increases the compatibility between the cork particles and the polymer matrix. This is evidenced by evaluating the mechanical properties of the composites and examining their fracture surface by scanning electron microscopy. The analysis of the thermal properties shows that the developed composites also present enhanced insulating properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...