Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 31(20): R1397-R1400, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34699807

RESUMO

New findings in the nematode Caenorhabditis elegans identify neuromodulation of behavioural responses to pheromones as a mechanism for regulating dispersal and foraging strategies.


Assuntos
Proteínas de Caenorhabditis elegans , Comportamento Alimentar , Animais , Atenção , Comportamento Animal , Caenorhabditis elegans/fisiologia , Comportamento Alimentar/fisiologia
2.
Elife ; 92020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33138916

RESUMO

Sexually dimorphic behaviours require underlying differences in the nervous system between males and females. The extent to which nervous systems are sexually dimorphic and the cellular and molecular mechanisms that regulate these differences are only beginning to be understood. We reveal here a novel mechanism by which male-specific neurons are generated in Caenorhabditis elegans through the direct transdifferentiation of sex-shared glial cells. This glia-to-neuron cell fate switch occurs during male sexual maturation under the cell-autonomous control of the sex-determination pathway. We show that the neurons generated are cholinergic, peptidergic, and ciliated putative proprioceptors which integrate into male-specific circuits for copulation. These neurons ensure coordinated backward movement along the mate's body during mating. One step of the mating sequence regulated by these neurons is an alternative readjustment movement performed when intromission becomes difficult to achieve. Our findings reveal programmed transdifferentiation as a developmental mechanism underlying flexibility in innate behaviour.


Assuntos
Transdiferenciação Celular , Neuroglia/citologia , Neurônios/citologia , Comportamento Sexual Animal , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Cálcio/química , Comunicação Celular , Linhagem da Célula , Copulação , Feminino , Masculino , Interferência de RNA , Reprodução , Células Receptoras Sensoriais/citologia , Caracteres Sexuais
3.
Methods Mol Biol ; 1779: 289-312, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29886540

RESUMO

Bacteria are the simplest cellular model in which amyloidosis has been addressed. It is well documented that bacterial consortia (biofilms) assemble their extracellular matrix on an amyloid scaffold, yet very few intracellular amyloids are known in bacteria. Here, we describe the methods we have resorted to characterize in Escherichia coli cells the amyloidogenesis, propagation, and dynamics of the RepA-WH1 prionoid. This prion-like protein, a manifold domain from the plasmid replication protein RepA, itself capable of assembling a functional amyloid, causes when expressed in E. coli a synthetic amyloid proteinopathy, the first model for an amyloid disease with a purely bacterial origin. These protocols are useful to study other intracellular amyloids in bacteria.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , Escherichia coli/fisiologia , Transativadores/química , Transativadores/metabolismo , Amiloide/química , Amiloide/metabolismo , Biofilmes , Escherichia coli/metabolismo , Microscopia Imunoeletrônica , Agregados Proteicos , Domínios Proteicos , Imagem com Lapso de Tempo
4.
Sci Rep ; 7(1): 11908, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28928456

RESUMO

Amyloid aggregation of the eukaryotic translation terminator eRF3/Sup35p, the [PSI +] prion, empowers yeast ribosomes to read-through UGA stop codons. No similar functional prion, skipping a stop codon, has been found in Escherichia coli, a fact possibly due to the efficient back-up systems found in bacteria to rescue non-stop complexes. Here we report that engineering hydrophobic amyloidogenic repeats from a synthetic bacterial prion-like protein (RepA-WH1) into the E. coli releasing factor RF1 promotes its aggregation and enables ribosomes to continue with translation through a premature UAG stop codon located in a ß-galactosidase reporter. To our knowledge, intended aggregation of a termination factor is a way to overcome the bacterial translation quality checkpoint that had not been reported so far. We also show the feasibility of using the amyloidogenic RF1 chimeras as a reliable, rapid and cost-effective system to screen for molecules inhibiting intracellular protein amyloidogenesis in vivo, by testing the effect on the chimeras of natural polyphenols with known anti-amyloidogenic properties. Resveratrol exhibits a clear amyloid-solubilizing effect in this assay, showing no toxicity to bacteria or interference with the enzymatic activity of ß-galactosidase.


Assuntos
Amiloide/genética , Códon de Terminação/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Fatores de Terminação de Peptídeos/genética , Avaliação Pré-Clínica de Medicamentos , Regulação Bacteriana da Expressão Gênica , Polifenóis/farmacologia , Agregados Proteicos/efeitos dos fármacos , Biossíntese de Proteínas , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/genética , Ribossomos/genética
5.
Front Microbiol ; 8: 539, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28421043

RESUMO

The synthetic bacterial prionoid RepA-WH1 causes a vertically transmissible amyloid proteinopathy in Escherichia coli that inhibits growth and eventually kills the cells. Recent in vitro studies show that RepA-WH1 builds pores through model lipid membranes, suggesting a possible mechanism for bacterial cell death. By comparing acutely (A31V) and mildly (ΔN37) cytotoxic mutant variants of the protein, we report here that RepA-WH1(A31V) expression decreases the intracellular osmotic pressure and compromise bacterial viability under either aerobic or anaerobic conditions. Both are effects expected from threatening membrane integrity and are in agreement with findings on the impairment by RepA-WH1(A31V) of the proton motive force (PMF)-dependent transport of ions (Fe3+) and ATP synthesis. Systems approaches reveal that, in aerobiosis, the PMF-independent respiratory dehydrogenase NdhII is induced in response to the reduction in intracellular levels of iron. While NdhII is known to generate H2O2 as a by-product of the autoxidation of its FAD cofactor, key proteins in the defense against oxidative stress (OxyR, KatE), together with other stress-resistance factors, are sequestered by co-aggregation with the RepA-WH1(A31V) amyloid. Our findings suggest a route for RepA-WH1 toxicity in bacteria: a primary hit of damage to the membrane, compromising bionergetics, triggers a stroke of oxidative stress, which is exacerbated due to the aggregation-dependent inactivation of enzymes and transcription factors that enable the cellular response to such injury. The proteinopathy caused by the prion-like protein RepA-WH1 in bacteria recapitulates some of the core hallmarks of human amyloid diseases.

6.
Front Mol Biosci ; 3: 66, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27800482

RESUMO

Certain Salmonella enterica serovars belonging to subspecies I carry low-copy-number virulence plasmids of variable size (50-90 kb). All of these plasmids share the spv operon, which is important for systemic infection. Virulence plasmids are present at low copy numbers. Few copies reduce metabolic burden but suppose a risk of plasmid loss during bacterial division. This drawback is counterbalanced by maintenance modules that ensure plasmid stability, including partition systems and toxin-antitoxin (TA) loci. The low-copy number virulence pSLT plasmid of Salmonella enterica serovar Typhimurium encodes three auxiliary maintenance systems: one partition system (parAB) and two TA systems (ccdABST and vapBC2ST). The TA module ccdABST has previously been shown to contribute to pSLT plasmid stability and vapBC2ST to bacterial virulence. Here we describe a novel assay to measure plasmid stability based on the selection of plasmid-free cells following elimination of plasmid-containing cells by ParE toxin, a DNA gyrase inhibitor. Using this new maintenance assay we confirmed a crucial role of parAB in pSLT maintenance. We also showed that vapBC2ST, in addition to contribute to bacterial virulence, is important for plasmid stability. We have previously shown that ccdABST encodes an inactive CcdBST toxin. Using our new stability assay we monitored the contribution to plasmid stability of a ccdABST variant containing a single mutation (R99W) that restores the toxicity of CcdBST. The "activation" of CcdBST (R99W) did not increase pSLT stability by ccdABST. In contrast, ccdABST behaves as a canonical type II TA system in terms of transcriptional regulation. Of interest, ccdABST was shown to control the expression of a polycistronic operon in the pSLT plasmid. Collectively, these results show that the contribution of the CcdBST toxin to pSLT plasmid stability may depend on its role as a co-repressor in coordination with CcdAST antitoxin more than on its toxic activity.

7.
Sci Rep ; 6: 25425, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27147472

RESUMO

DNA replication is tightly regulated to constrain the genetic material within strict spatiotemporal boundaries and copy numbers. Bacterial plasmids are autonomously replicating DNA molecules of much clinical, environmental and biotechnological interest. A mechanism used by plasmids to prevent over-replication is 'handcuffing', i.e. inactivating the replication origins in two DNA molecules by holding them together through a bridge built by a plasmid-encoded initiator protein (Rep). Besides being involved in handcuffing, the WH1 domain in the RepA protein assembles as amyloid fibres upon binding to DNA in vitro. The amyloid state in proteins is linked to specific human diseases, but determines selectable and epigenetically transmissible phenotypes in microorganisms. Here we have explored the connection between handcuffing and amyloidogenesis of full-length RepA. Using a monoclonal antibody specific for an amyloidogenic conformation of RepA-WH1, we have found that the handcuffed RepA assemblies, either reconstructed in vitro or in plasmids clustering at the bacterial nucleoid, are amyloidogenic. The replication-inhibitory RepA handcuff assembly is, to our knowledge, the first protein amyloid directly dealing with DNA. Built on an amyloid scaffold, bacterial plasmid handcuffs can bring a novel molecular solution to the universal problem of keeping control on DNA replication initiation.


Assuntos
DNA Helicases/farmacologia , Replicação do DNA/efeitos dos fármacos , Plasmídeos/genética , Transativadores/farmacologia , Amiloide/química , Amiloide/imunologia , Amiloide/farmacologia , Anticorpos/metabolismo , DNA Helicases/química , DNA Helicases/imunologia , DNA Bacteriano/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Microscopia Eletrônica , Plasmídeos/efeitos dos fármacos , Conformação Proteica , Origem de Replicação , Transativadores/química , Transativadores/imunologia
8.
Prion ; 10(1): 41-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27040981

RESUMO

In bacterial plasmids, Rep proteins initiate DNA replication by undergoing a structural transformation coupled to dimer dissociation. Amyloidogenesis of the 'winged-helix' N-terminal domain of RepA (WH1) is triggered in vitro upon binding to plasmid-specific DNA sequences, and occurs at the bacterial nucleoid in vivo. Amyloid fibers are made of distorted RepA-WH1 monomers that assemble as single or double intertwined tubular protofilaments. RepA-WH1 causes in E. coli an amyloid proteinopathy, which is transmissible from mother to daughter cells, but not infectious, and enables conformational imprinting in vitro and in vivo; i.e. RepA-WH1 is a 'prionoid'. Microfluidics allow the assessment of the intracellular dynamics of RepA-WH1: bacterial lineages maintain two types (strains-like) of RepA-WH1 amyloids, either multiple compact cytotoxic particles or a single aggregate with the appearance of a fluidized hydrogel that it is mildly detrimental to growth. The Hsp70 chaperone DnaK governs the phase transition between both types of RepA-WH1 aggregates in vivo, thus modulating the vertical propagation of the prionoid. Engineering chimeras between the Sup35p/[PSI(+)] prion and RepA-WH1 generates [REP-PSI(+)], a synthetic prion exhibiting strong and weak phenotypic variants in yeast. These recent findings on a synthetic, self-contained bacterial prionoid illuminate central issues of protein amyloidogenesis.


Assuntos
Amiloide/química , Amiloide/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , Príons/química , Príons/metabolismo , Domínios Proteicos , Transativadores/química , Transativadores/metabolismo , Amiloide/ultraestrutura , DNA Helicases/ultraestrutura , DNA Bacteriano , Proteínas de Choque Térmico HSP70 , Conformação Proteica , Transativadores/ultraestrutura
9.
J Bacteriol ; 196(14): 2536-42, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24794561

RESUMO

The N-terminal domain (winged-helix domain, or WH1) of the Pseudomonas pPS10 plasmid DNA replication protein RepA can assemble into amyloid fibers in vitro and, when expressed in Escherichia coli, leads to a unique intracellular amyloid proteinopathy by hampering bacterial proliferation. RepA-WH1 amyloidosis propagates along generations through the transmission of aggregated particles across the progeny, but it is unable to propagate horizontally as an infectious agent and is thus the first synthetic bacterial prionoid. RepA-WH1 amyloidosis is promoted by binding to double-stranded DNA (dsDNA) in vitro, and it is modulated by the Hsp70 chaperone DnaK in vivo. Different mutations in the repA-WH1 gene result in variants of the protein with distinct amyloidogenic properties. Here, we report that intracellular aggregates of the hyperamyloidogenic RepA with an A31V change in WH1 [RepA-WH1(A31V)] are able to induce and enhance the growth in vivo of new amyloid particles from molecules of wild-type RepA-WH1 [RepA-WH1(WT)], which otherwise would remain soluble in the cytoplasm. In contrast, RepA-WH1(ΔN37), a variant lacking a clear amyloidogenic sequence stretch that aggregates as conventional inclusion bodies (IBs), can drive the aggregation of the soluble protein into IBs only if expressed at high molar ratios over RepA-WH1(WT). The cytotoxic bacterial intracellular prionoid RepA-WH1 thus exhibits a hallmark feature of amyloids, as characterized in eukaryotes: cross-aggregation between variants of the same protein.


Assuntos
DNA Helicases/metabolismo , Escherichia coli K12/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Variação Genética/fisiologia , Transativadores/metabolismo , DNA Helicases/genética , Escherichia coli K12/genética , Estrutura Terciária de Proteína/fisiologia , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...