Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genet Mol Biol ; 45(1): e20210016, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34919115

RESUMO

Soybean is a key crop in many countries, being used from human food to the animal industry due to its nutritional properties. Financially, the grain chain moves large sums of money into the economy of producing countries. However, like other agricultural commodities around the world, it can have its final yield seriously compromised by abiotic environmental stressors, like drought. As flowers imply in pods and in grains inside it to minimize damages caused by water restriction, researchers have focused on understanding flowering-process related genes and their interactions. Here a review dedicated to the soybean flowering process and gene network involved in it is presented, describing gene interactions and how genes act in this complex mechanism, also ruled by environmental triggers such as day-light and circadian cycle. The objective was to gather information and insights on the soybean flowering process, aiming to provide knowledge useful to assist in the development of drought-tolerant soybean lines, minimizing losses due to delays or anticipation of flowering and, consequently, restraining financial and productivity losses.

2.
Genet Mol Biol ; 43(3): e20190292, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32511664

RESUMO

Water deficit is an important climatic problem that can impair agriculture yield and economy. Genetically modified soybean plants containing the AtNCED3 gene were obtained aiming drought-tolerance improvement. The NCED3 gene encodes a 9-cis-epoxycarotenoid dioxygenase (NCED, EC 1.13.11.51), an important enzyme in abscisic acid biosynthesis. ABA activates the expression of drought-responsive genes, in water-deficit conditions, targeting defense mechanisms and enabling plants to survive under low water availability. Results from greenhouse experiments showed that the transgene AtNCED3 and the endogenous genes GmAREB1, GmPP2C, GmSnRK2 and GmAAO3 presented higher expression under water deficit (WD) in the event 2Ha11 than in WT-plants. No significant correlation was observed between the plant materials and WD conditions for growth parameters; however, gas exchange measurements decreased in the GM event, which also showed 80% higher intrinsic water use when compared to WT plants. In crop season 2015/16, event 2Ha11 showed higher total number of pods, higher number of pods with seeds and yield than WT plants. ABA concentration was also higher in GM plants under WD. These results obtained in field screenings suggest that AtNCED3 soybean plants might outperform under drought, reducing economic and yield losses, thus being a good candidate line to be incorporated in the soybean-breeding program to develop drought-tolerant cultivars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...