Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Plant Sci ; 9: 288, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593756

RESUMO

Verticillium wilt and leaf mottle of sunflower, caused by the fungus Verticillium dahliae (Vd) has become a major constraint to sunflower oil production in temperate European countries. Information about Vd from sunflower is very scarce despite genetics, molecular traits and pathogenic abilities of fungal strains affecting many other crops being widely known. Understanding and characterizing the diversity of Vd populations in those countries where sunflowers are frequent and severely affected by the fungus are essential for efficient breeding for resistance. In this study, we have analyzed genetic, molecular and pathogenic traits of Vd isolates affecting sunflower in European countries. When their genetics was investigated, almost all the isolates from France, Italy, Spain, Argentina, and Ukraine were assigned to vegetative compatibility group (VCG) 2B. In Bulgaria, Turkey, Romania, and Ukraine, some isolates were assigned to VCG6, but some others could not be assigned to any VCG. Genotyping markers used for Vd affecting crops other than sunflower showed that all the isolates were molecularly identified as race 2 and that markers of defoliating (D) and non-defoliating (ND) pathotypes distinguished two well-differentiated clusters, one (E) grouping those isolates from Eastern Europe and the other (W) all those from the Western Europe and Argentina. All the isolates in cluster W were VCG2B, while the isolates in cluster E belonged to an unknown VCG or to VCG6. When the host range was investigated in the greenhouse, the fungus was highly pathogenic to artichoke, showing the importance of farming alternatives in the management of Verticillium attacks. Sunflower genotypes were inoculated with a selection of isolates in two experiments. Two groups were identified, one including the isolates from Western Europe, Argentina, and Ukraine, and the other including isolates from Bulgaria, Romania, and Turkey. Three pathogenic races were differentiated: V1, V2-EE (Eastern Europe) and V2-WE (Western Europe). Similarly, three differentials are proposed for race identification: HA 458 (universal susceptible), HA 89 (resistant to V2-EE, susceptible to V2-WE) and INRA2603 (susceptible to V2-EE, resistant to V2-WE). The diversity found in Vd affecting sunflower must be taken into account in the search for resistance to the pathogen for European environments of sunflower production.

3.
Front Plant Sci ; 8: 833, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28572814

RESUMO

Although the impact of Orobanche cumana Wallr. on sunflower (Helianthus annuus L.) becomes evident with emergence of broomrape shoots aboveground, infection occurs early after sowing, the host physiology being altered during underground parasite stages. Genetic resistance is the most effective control method and one of the main goals of sunflower breeding programmes. Blue-green fluorescence (BGF) and thermal imaging allow non-destructive monitoring of plant diseases, since they are sensitive to physiological disorders in plants. We analyzed the BGF emission by leaves of healthy sunflower plantlets, and we implemented BGF and thermal imaging in the detection of the infection by O. cumana during underground parasite development. Increases in BGF emission were observed in leaf pairs of healthy sunflowers during their development. Lower BGF was consistently detected in parasitized plants throughout leaf expansion and low pigment concentration was detected at final time, supporting the interpretation of a decrease in secondary metabolites upon infection. Parasite-induced stomatal closure and transpiration reduction were suggested by warmer leaves of inoculated sunflowers throughout the experiment. BGF imaging and thermography could be implemented for fast screening of sunflower breeding material. Both techniques are valuable approaches to assess the processes by which O. cumana alters physiology (secondary metabolism and photosynthesis) of sunflower.

4.
Front Plant Sci ; 7: 884, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446116

RESUMO

Broomrape, caused by the root holoparasite Orobanche cumana, is the main biotic constraint to sunflower oil production worldwide. By the time broomrape emerges, most of the metabolic imbalance has been produced by O. cumana to sunflower plants. UV-induced multicolor fluorescence imaging (MCFI) provides information on the fluorescence emitted by chlorophyll (Chl) a of plants in the spectral bands with peaks near 680 nm (red, F680) and 740 nm (far-red, F740). In this work MCFI was extensively applied to sunflowers, either healthy or parasitized plants, for the first time. The distribution of red and far-red fluorescence was analyzed in healthy sunflower grown in pots under greenhouse conditions. Fluorescence patterns were analyzed across the leaf surface and throughout the plant by comparing the first four leaf pairs (LPs) between the second and fifth week of growth. Similar fluorescence patterns, with a delay of 3 or 4 days between them, were obtained for LPs of healthy sunflower, showing that red and far-red fluorescence varied with the developmental stage of the leaf. The use of F680 and F740 as indicators of sunflower infection by O. cumana during underground development stages of the parasite was also evaluated under similar experimental conditions. Early increases in F680 and F740 as well as decreases in F680/F740 were detected upon infection by O. cumana. Significant differences between inoculated and control plants depended on the LP that was considered at any time. Measurements of Chl contents and final total Chl content supported the results of MCFI, but they were less sensitive in differentiating healthy from inoculated plants. Sunflower infection was confirmed by the presence of broomrape nodules in the roots at the end of the experiment. The potential of MCFI in the red and far-red region for an early detection of O. cumana infection in sunflower was revealed. This technique might have a particular interest for early phenotyping in sunflower breeding programs. To our knowledge, this is the first work where the effect of a parasitic plant in its host is analyzed by means of fluorescence imaging in the red and far-red spectral regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA