Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 8: 618645, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898476

RESUMO

Recently, we developed a three-compartment dual-output model that incorporates spillover (SP) and partial volume (PV) corrections to simultaneously estimate the kinetic parameters and model-corrected blood input function (MCIF) from dynamic 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET) images of mouse heart in vivo. In this study, we further optimized this model and utilized the estimated MCIF to compute cerebral FDG uptake rates, K i , from dynamic total-body FDG PET images of control Wistar-Kyoto (WKY) rats and compared to those derived from arterial blood sampling in vivo. Dynamic FDG PET scans of WKY rats (n = 5), fasted for 6 h, were performed using the Albira Si Trimodal PET/SPECT/CT imager for 60 min. Arterial blood samples were collected for the entire imaging duration and then fitted to a seven-parameter function. The 60-min list mode PET data, corrected for attenuation, scatter, randoms, and decay, were reconstructed into 23 time bins. A 15-parameter dual-output model with SP and PV corrections was optimized with two cost functions to compute MCIF. A four-parameter compartment model was then used to compute cerebral Ki. The computed area under the curve (AUC) and K i were compared to that derived from arterial blood samples. Experimental and computed AUCs were 1,893.53 ± 195.39 kBq min/cc and 1,792.65 ± 155.84 kBq min/cc, respectively (p = 0.76). Bland-Altman analysis of experimental vs. computed K i for 35 cerebral regions in WKY rats revealed a mean difference of 0.0029 min-1 (~13.5%). Direct (AUC) and indirect (Ki) comparisons of model computations with arterial blood sampling were performed in WKY rats. AUC and the downstream cerebral FDG uptake rates compared well with that obtained using arterial blood samples. Experimental vs. computed cerebral K i for the four super regions including cerebellum, frontal cortex, hippocampus, and striatum indicated no significant differences.

2.
Phys Med Biol ; 65(24): 245016, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32590380

RESUMO

This study evaluates the performance of the Bruker positron emission tomograph (PET) insert combined with a BioSpec 70/30 USR magnetic resonance imaging (MRI) scanner using the manufacturer acceptance protocol and the NEMA NU 4-2008 for small animal PET. The PET insert is made of 3 rings of 8 monolithic LYSO crystals (50 × 50 × 10 mm3) coupled to silicon photomultipliers (SiPM) arrays, conferring an axial and transaxial FOV of 15 cm and 8 cm. The MRI performance was evaluated with and without the insert for the following radiofrequency noise, magnetic field homogeneity and image quality. For the PET performance, we extended the NEMA protocol featuring system sensitivity, count rates, spatial resolution and image quality to homogeneity and accuracy for quantification using several MRI sequences (RARE, FLASH, EPI and UTE). The PET insert does not show any adverse effect on the MRI performances. The MR field homogeneity is well preserved (Diameter Spherical Volume, for 20 mm of 1.98 ± 4.78 without and -0.96 ± 5.16 Hz with the PET insert). The PET insert has no major effect on the radiofrequency field. The signal-to-noise ratio measurements also do not show major differences. Image ghosting is well within the manufacturer specifications (<2.5%) and no RF noise is visible. Maximum sensitivity of the PET insert is 11.0% at the center of the FOV even with simultaneous acquisition of EPI and RARE. PET MLEM resolution is 0.87 mm (FWHM) at 5 mm off-center of the FOV and 0.97 mm at 25 mm radial offset. The peaks for true/noise equivalent count rates are 410/240 and 628/486 kcps for the rat and mouse phantoms, and are reached at 30.34/22.85 and 27.94/22.58 MBq. PET image quality is minimally altered by the different MRI sequences. The Bruker PET insert shows no adverse effect on the MRI performance and demonstrated a high sensitivity, sub-millimeter resolution and good image quality even during simultaneous MRI acquisition.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Tomografia por Emissão de Pósitrons/instrumentação , Animais , Desenho de Equipamento , Modelos Lineares , Camundongos , Imagens de Fantasmas , Ratos , Razão Sinal-Ruído
3.
Front Med (Lausanne) ; 6: 88, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31131277

RESUMO

Ionizing radiation constitutes a health risk to imaging scientists and study animals. Both PET and CT produce ionizing radiation. CT doses in pre-clinical in vivo imaging typically range from 50 to 1,000 mGy and biological effects in mice at this dose range have been previously described. [18F]FDG body doses in mice have been estimated to be in the range of 100 mGy for [18F]FDG. Yearly, the average whole body doses due to handling of activity by PET technologists are reported to be 3-8 mSv. A preclinical PET/CT system is presented with design features which make it suitable for small animal low-dose imaging. The CT subsystem uses a X-source power that is optimized for small animal imaging. The system design incorporates a spatial beam shaper coupled with a highly sensitive flat-panel detector and very fast acquisition (<10 s) which allows for whole body scans with doses as low as 3 mGy. The mouse total-body PET subsystem uses a detector architecture based on continuous crystals, coupled to SiPM arrays and a readout based in rows and columns. The PET field of view is 150 mm axial and 80 mm transaxial. The high solid-angle coverage of the sample and the use of continuous crystals achieve a sensitivity of 9% (NEMA) that can be leveraged for use of low tracer doses and/or performing rapid scans. The low-dose imaging capabilities of the total-body PET subsystem were tested with NEMA phantoms, in tumor models, a mouse bone metabolism scan and a rat heart dynamic scan. The CT imaging capabilities were tested in mice and in a low contrast phantom. The PET low-dose phantom and animal experiments provide evidence that image quality suitable for preclinical PET studies is achieved. Furthermore, CT image contrast using low dose scan settings was suitable as a reference for PET scans. Total-body mouse PET/CT studies could be completed with total doses of <10 mGy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...