Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(48): 19527-19541, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38044824

RESUMO

The pressure-induced properties of hybrid organic-inorganic ferroelectrics (HOIFs) with tunable structures and selectable organic and inorganic components are important for device fabrication. However, given the structural complexity of polycrystalline HOIFs and the limited resolution of pressure data, resolving the structure-property puzzle has so far been the exception rather than the rule. With this in mind, we present a collection of in situ high-pressure data measured for triethylmethylammonium tetrabromoferrate(III), ([N(C2H5)3CH3][FeBr4]) (EMAFB) by unraveling its flexible physical and photophysical behavior up to 80 GPa. Pressure-driven X-ray diffraction and Raman spectroscopy disclose its soft and reversible structural distortion, creating room for delicate band gap modulation. During compression, orange turns dark red at ∼2 GPa, and further compression results in piezochromism, leading to opaque black, while decompressed EMAFB appears in an orange hue. Assuming that the mechanical softness of EMAFB is the basis for reversible piezochromic control, we present alternations in the electronic landscape leading to a 1.22 eV band narrowing at 20.3 GPa while maintaining the semiconducting character at 72 GPa. EMAFB exhibits an emission enhancement, manifested by an increase of photoluminescence up to 17.3 GPa, correlating with the onsets of structural distortion and amorphization. The stimuli-responsive behavior of EMAFB, exhibiting stress-activated modification of the electronic structure, can enrich the physical library of HOIFs suitable for pressure-sensing technologies.

2.
ACS Appl Mater Interfaces ; 15(23): 28166-28174, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37259773

RESUMO

One major concern toward the performance and stability of halide perovskite-based optoelectronic devices is the formation of metallic lead that promotes nonradiative recombination of charge carriers. The origin of metallic lead formation is being disputed whether it occurs during the perovskite synthesis or only after light, electron, or X-ray beam irradiation or thermal annealing. Here, we show that the quantity of metallic lead detected in perovskite crystals depends on the concentration and composition of the precursor solution. Through a controlled crystallization process, we grew black-colored mixed dimethylammonium (DMA)/methylammonium (MA) lead tribromide crystals. The black color is suggested to be due to the presence of small lead clusters. Despite the unexpected black coloring, the crystals show higher crystallinity and less defect density with respect to the standard yellow-colored DMA/MAPbBr3 crystals, as indicated by X-ray rocking curve and dark current measurements, respectively. While the formation of metallic lead could still be induced by external factors, the precursor solution composition and concentration can facilitate the formation of metallic lead during the crystallization process. Our results indicate that additional research is required to fully understand the perovskite precursor solution chemistry.

3.
IUCrJ ; 10(Pt 4): 397-410, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37199503

RESUMO

Erionite is a non-asbestos fibrous zeolite classified by the International Agency for Research on Cancer (IARC) as a Group 1 carcinogen and is considered today similar to or even more carcinogenic than the six regulated asbestos minerals. Exposure to fibrous erionite has been unequivocally linked to cases of malignant mesothelioma (MM) and this killer fibre is assumed to be directly responsible for more than 50% of all deaths in the population of the villages of Karain and Tuzköy in central Anatolia (Turkey). Erionite usually occurs in bundles of thin fibres and very rarely as single acicular or needle-like fibres. For this reason, a crystal structure of this fibre has not been attempted to date although an accurate characterization of its crystal structure is of paramount importance for our understanding of the toxicity and carcinogenicity. In this work, we report on a combined approach of microscopic (SEM, TEM, electron diffraction), spectroscopic (micro-Raman) and chemical techniques with synchrotron nano-single-crystal diffraction that allowed us to obtain the first reliable ab initio crystal structure of this killer zeolite. The refined structure showed regular T-O distances (in the range 1.61-1.65 Å) and extra-framework content in line with the chemical formula (K2.63Ca1.57Mg0.76Na0.13Ba0.01)[Si28.62Al7.35]O72·28.3H2O. The synchrotron nano-diffraction data combined with three-dimensional electron diffraction (3DED) allowed us to unequivocally rule out the presence of offretite. These results are of paramount importance for understanding the mechanisms by which erionite induces toxic damage and for confirming the physical similarities with asbestos fibres.


Assuntos
Amianto , Mesotelioma , Zeolitas , Humanos , Zeolitas/análise , Mesotelioma/epidemiologia , Turquia/epidemiologia , Exposição Ambiental , Carcinógenos
4.
RSC Adv ; 12(52): 33516-33524, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36505725

RESUMO

A one dimensional (1D) perovskite-type (C6H7NBr)3[CdBr5] (abbreviated 4-BAPC) was synthesized by slow evaporation at room temperature (RT). 4-BAPC crystalizes in the monoclinic system with the space group P21/c. The 1D inorganic chains are formed by corner sharing CdBr6 octahedra. Thermal measurement shows that 4-BAPC is stable up to 190 °C. Optical characterization demonstrates that the grown crystal is an indirect bandgap material with a bandgap value of 3.93 eV, which is consistent with theoretical calculations. The electronic structure, calculated using density functional theory, reveals that the valence band originates from a combination of Br-4p orbitals and Cd-4d orbitals, whereas the conduction band originates from the Cd-5s orbitals. The photoluminescence spectroscopy shows that the obtained material exhibits a broad-band white light emission with extra-high CRI of 98 under λ exc = 380 nm. This emission is mainly resulting from the self-trapped exciton recombinations within the inorganic CdBr6 octahedron, and the fluorescence within the organic conjugated ammonium salt.

5.
ACS Omega ; 7(37): 32949-32958, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36157745

RESUMO

A novel double-open-cubane (NNCO)6Co4Cl2 cluster with a Co4O6 core was made available under aqua-ultrasonic open atmosphere conditions for the first time. The ultrasonic clusterization of the (3,5-dimethyl-1H-pyrazol-1-yl)methanol (NNCOH) ligand with CoCl2·6H2O salts in ethanol yielded a high-purity and high-yield cluster product. Energy-dispersive X-ray (EDX), Fourier transform infrared (FT-IR), and ultraviolet (UV)-visible techniques were used to elucidate the clusterization process. The double-open-Co4O6 cubane structure of the (NNCO)6Co4Cl2 cluster was solved by synchrotron single-crystal X-ray diffraction (SXRD) and supported by density functional theory (DFT) optimization and thermogravimetric/differential TG (TG/DTG) measurements; moreover, the DFT structural parameters correlated with the ones determined by SXRD. Molecular electrostatic potential (MEP), Mulliken atomic charge/natural population analysis (MAC/NPA), highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO), density of states (DOS), and GRD quantum analyses were computed at the DFT/B3LYP/6-311G(d,p) theory level. The thermal behavior of the cluster was characterized to support the formation of the Co4O6 core as a stable final product. The catalytic property of the (NNCO)6Co4Cl2 cluster was predestined for the oxidation process of 3,5-DTBC diol (3,5-di-tert-butylbenzene-1,2-diol) to 3,5-DTBQ dione (3,5-di-tert-butylcyclohexa-3,5-diene-1,2-dione).

6.
Nat Commun ; 13(1): 3976, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803933

RESUMO

Colloidal chemistry grants access to a wealth of materials through simple and mild reactions. However, even few elements can combine in a variety of stoichiometries and structures, potentially resulting in impurities or even wrong products. Similar issues have been long addressed in organic chemistry by using reaction-directing groups, that are added to a substrate to promote a specific product and are later removed. Inspired by such approach, we demonstrate the use of CsPbCl3 perovskite nanocrystals to drive the phase-selective synthesis of two yet unexplored lead sulfochlorides: Pb3S2Cl2 and Pb4S3Cl2. When homogeneously nucleated in solution, lead sulfochlorides form Pb3S2Cl2 nanocrystals. Conversely, the presence of CsPbCl3 triggers the formation of Pb4S3Cl2/CsPbCl3 epitaxial heterostructures. The phase selectivity is guaranteed by the continuity of the cationic subnetwork across the interface, a condition not met in a hypothetical Pb3S2Cl2/CsPbCl3 heterostructure. The perovskite domain is then etched, delivering phase-pure Pb4S3Cl2 nanocrystals that could not be synthesized directly.

7.
Angew Chem Int Ed Engl ; 61(22): e202201747, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35226780

RESUMO

Here we present a colloidal approach to synthesize bismuth chalcohalide nanocrystals (BiEX NCs, in which E=S, Se and X=Cl, Br, I). Our method yields orthorhombic elongated BiEX NCs, with BiSCl crystallizing in a previously unknown polymorph. The BiEX NCs display a composition-dependent band gap spanning the visible spectral range and absorption coefficients exceeding 105  cm-1 . The BiEX NCs show chemical stability at standard laboratory conditions and form colloidal inks in different solvents. These features enable the solution processing of the NCs into robust solid films yielding stable photoelectrochemical current densities under solar-simulated irradiation. Overall, our versatile synthetic protocol may prove valuable in accessing colloidal metal chalcohalide nanomaterials at large and contributes to establish metal chalcohalides as a promising complement to metal chalcogenides and halides for applied nanotechnology.

8.
Adv Mater ; 34(7): e2106160, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34856033

RESUMO

The solvent acidolysis crystallization technique is utilized to grow mixed dimethylammonium/methylammonium lead tribromide (DMA/MAPbBr3 ) crystals reaching the highest dimethylammonium incorporation of 44% while maintaining the 3D cubic perovskite phase. These mixed perovskite crystals show suppression of the orthorhombic phase and a lower tetragonal-to-cubic phase-transition temperature compared to MAPbBr3 . A distinct behavior is observed in the temperature-dependent photoluminescence properties of MAPbBr3 and mixed DMA/MAPbBr3 crystals due to the different organic cation dynamics governing the phase transition(s). Furthermore, lateral photodetectors based on these crystals show that, at room temperature, the mixed crystals possess higher detectivity compared to MAPbBr3 crystals caused by structural compression and reduced surface trap density. Remarkably, the mixed-crystal devices exhibit large enhancement in their detectivity below the phase-transition temperature (at 200 K), while for the MAPbBr3 devices only insignificant changes are observed. The high detectivity of the mixed crystals makes them attractive for visible-light communication and for space applications. The results highlight the importance of the synthetic technique for compositional engineering of halide perovskites that governs their structural and optoelectronic properties.

10.
Nat Nanotechnol ; 16(12): 1349-1354, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34675412

RESUMO

The engineering of the energy dispersion of polaritons in microcavities through nanofabrication or through the exploitation of intrinsic material and cavity anisotropies has demonstrated many intriguing effects related to topology and emergent gauge fields such as the anomalous quantum Hall and Rashba effects. Here we show how we can obtain different Berry curvature distributions of polariton bands in a strongly coupled organic-inorganic two-dimensional perovskite single-crystal microcavity. The spatial anisotropy of the perovskite crystal combined with photonic spin-orbit coupling produce two Hamilton diabolical points in the dispersion. An external magnetic field breaks time-reversal symmetry owing to the exciton Zeeman splitting and lifts the degeneracy of the diabolical points. As a result, the bands possess non-zero integral Berry curvatures, which we directly measure by state tomography. In addition to the determination of the different Berry curvatures of the multimode microcavity dispersions, we can also modify the Berry curvature distribution, the so-called band geometry, within each band by tuning external parameters, such as temperature, magnetic field and sample thickness.

11.
Adv Mater ; 33(48): e2102326, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34623706

RESUMO

Hybrid perovskites are among the most promising materials for optoelectronic applications. Their 2D crystalline form is even more interesting since the alternating inorganic and organic layers naturally forge a multiple quantum-well structure, leading to the formation of stable excitonic resonances. Nevertheless, a controlled modulation of the quantum well width, which is defined by the number of inorganic layers (n) between two organic ones, is not trivial and represents the main synthetic challenge in the field. Here, a conceptually innovative approach to easily tune n in lead iodide perovskite single-crystalline flakes is presented. The judicious use of potassium iodide is found to modulate the supersaturation levels of the precursors solution without being part of the final products. This allows to obtain a fine tuning of the n value. The excellent optical quality of the as synthesized flakes guarantees an in-depth analysis by Fourier-space microscopy, revealing that the excitons orientation can be manipulated by modifying the number of inorganic layers. Excitonic out-of-plane component, indeed, is enhanced when "n" is increased. The combined advances in the synthesis and optical characterization fill in the picture of the exciton behavior in low-dimensional perovskite, paving the way to the design of materials with improved optoelectronic characteristics.

12.
Adv Mater ; 33(13): e2008004, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33644923

RESUMO

The unique combination of organic and inorganic layers in 2D layered perovskites offers promise for the design of a variety of materials for mechatronics, flexoelectrics, energy conversion, and lighting. However, the potential tailoring of their properties through the organic building blocks is not yet well understood. Here, different classes of organoammonium molecules are exploited to engineer the optical emission and robustness of a new set of Ruddlesden-Popper metal-halide layered perovskites. It is shown that the type of molecule regulates the number of hydrogen bonds that it forms with the edge-sharing [PbBr6 ]4- octahedra layers, leading to strong differences in the material emission and tunability of the color coordinates, from deep-blue to pure-white. Also, the emission intensity strongly depends on the length of the molecules, thereby providing an additional parameter to optimize their emission efficiency. The combined experimental and computational study provides a detailed understanding of the impact of lattice distortions, compositional defects, and the anisotropic crystal structure on the emission of such layered materials. It is foreseen that this rational design can be extended to other types of organic linkers, providing a yet unexplored path to tailor the optical and mechanical properties of these materials and to unlock new functionalities.

13.
IUCrJ ; 8(Pt 1): 76-86, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33520244

RESUMO

The six natural silicates known as asbestos may induce fatal lung diseases via inhalation, with a latency period of decades. The five amphibole asbestos species are assumed to be biopersistent in the lungs, and for this reason they are considered much more toxic than serpentine asbestos (chrysotile). Here, we refined the atomic structure of an amosite amphibole asbestos fibre that had remained in a human lung for ∼40 years, in order to verify the stability in vivo. The subject was originally exposed to a blend of chrysotile, amosite and crocidolite, which remained in his parietal pleura for ∼40 years. We found a few relicts of chrysotile fibres that were amorphous and magnesium depleted. Amphibole fibres that were recovered were undamaged and suitable for synchrotron X-ray micro-diffraction experiments. Our crystal structure refinement from a recovered amosite fibre demonstrates that the original atomic distribution in the crystal is intact and, consequently, that the atomic structure of amphibole asbestos fibres remains stable in the lungs for a lifetime; during which time they can cause chronic inflammation and other adverse effects that are responsible for carcinogenesis. The amosite fibres are not iron depleted proving that the iron pool for the formation of the asbestos bodies is biological (haemoglobin/plasma derived) and that it does not come from the asbestos fibres themselves.

14.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 3): 427-435, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32831261

RESUMO

Anthracene derivative compounds are currently investigated because of their unique physical properties (e.g. bright luminescence and emission tunability), which make them ideal candidates for advanced optoelectronic devices. Intermolecular interactions are the basis of the tunability of the optical and electronic properties of these compounds, whose prediction and exploitation benefit from knowledge of the crystal structure and the packing architecture. Polymorphism can occur due to the weak intermolecular interactions, requiring detailed structural analysis to clarify the origin of observed material property modifications. Here, two silylethyne-substituted anthracene compounds are characterized by single-crystal synchrotron X-ray diffraction, identifying a new polymorph in the process. Additionally, laser confocal microscopy and fluorescence lifetime imaging microscopy confirm the results obtained by the X-ray diffraction characterization, i.e. shifting the substituents towards the external benzene rings of the anthracene unit favours π-π interactions, impacting on both the morphology and the microscopic optical properties of the crystals. The compounds with more isolated anthracene units feature shorter lifetime and emission spectra, more similar to those of isolated molecules. The crystallographic study, supported by the optical investigation, sheds light on the influence of non-covalent interactions on the crystal packing and luminescence properties of anthracene derivatives, providing a further step towards their efficient use as building blocks in active components of light sources and photonic networks.

15.
J Am Chem Soc ; 142(22): 10198-10211, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32374173

RESUMO

We report the colloidal synthesis of a series of surfactant-stabilized lead chalcohalide nanocrystals. Our work is mainly focused on Pb4S3Br2, a chalcohalide phase unknown to date that does not belong to the ambient-pressure PbS-PbBr2 phase diagram. The Pb4S3Br2 nanocrystals herein feature a remarkably narrow size distribution (with a size dispersion as low as 5%), a good size tunability (from 7 to ∼30 nm), an indirect bandgap, photoconductivity (responsivity = 4 ± 1 mA/W), and stability for months in air. A crystal structure is proposed for this new material by combining the information from 3D electron diffraction and electron tomography of a single nanocrystal, X-ray powder diffraction, and density functional theory calculations. Such a structure is closely related to that of the recently discovered high-pressure chalcohalide Pb4S3I2 phase, and indeed we were able to extend our synthesis scheme to Pb4S3I2 colloidal nanocrystals, whose structure matches the one that has been published for the bulk. Finally, we could also prepare nanocrystals of Pb3S2Cl2, which proved to be a structural analogue of the recently reported bulk Pb3Se2Br2 phase. It is remarkable that one high-pressure structure (for Pb4S3I2) and two metastable structures that had not yet been reported (for Pb4S3Br2 and Pb3S2Cl2) can be prepared on the nanoscale by wet-chemical approaches. This highlights the important role of colloidal chemistry in the discovery of new materials and motivates further exploration into metal chalcohalide nanocrystals.

16.
Materials (Basel) ; 11(2)2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29461484

RESUMO

Anatase (TiO2) and multiwalled carbon nanotubes bearing polyethylenimine (PEI) anchored on their surface were hybridized in different proportions according to a sol-gel method. The resulting nanocomposites (TiO2@PEI-MWCNTs), characterized by BET, XRD, XPS, SEM, and UV techniques, were found efficient catalysts for CO2 photoreduction into formic and acetic acids in water suspension and under visible light irradiation. PEI-grafted nanotubes co-catalysts are believed to act as CO2 activators by forming a carbamate intermediate allowing to accomplish the first example in the literature of polyamines/nanotubes/TiO2 mediated CO2 photoreduction to carboxylic acids.

17.
Artigo em Inglês | MEDLINE | ID: mdl-26208623

RESUMO

Three new proton transfer compounds, [2-ammonio-5-methylcarboxybenzene perchlorate (1), (C8H10NO2(+)·ClO4(-)), 4-(ammoniomethyl)carboxybenzene nitrate (2), (C8H10NO2(+)·NO3(-)), and 4-(ammoniomethyl)carboxybenzene perchlorate (3), (C8H10NO2(+)·ClO4(-))], have been synthesized, their IR modes of vibrations have been assigned and their crystal structures studied by means of single-crystal X-ray diffraction. Their asymmetric units consist of one cation and one anion for both compounds (1) and (2). However, the crystal structure of compound (3) is based on a pair of cations and a pair of anions in its asymmetric unit. The three-dimensional Hirshfeld surface analysis and the two-dimensional fingerprint maps revealed that the three structures are dominated by H...O/O...H and H...H contacts. The strongest hydrogen-bonding interactions are associated with O-H...O and N-H...O constituting the highest fraction of approximately 50%, followed by those of the H...H type contributing 20%. Other close contacts are also present, including weak C...H/H...C contacts (with about 10%).

18.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 11): o1149-50, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25484794

RESUMO

The title compound, C24H25NO3·2CH3OH, which crystallized as a methanol disolvate, has applications as a PET radiotracer in the early diagnosis of Alzheimer's disease. The dihedral angle between the biphenyl rings is 8.2 (2)° and the heterocyclic ring adopts a half-chair conformation with the N atom adopting a pyramidal geometry (bond-angle sum = 327.6°). The C atoms of both meth-oxy groups lie close to the plane of their attached ring [deviations = 0.107 (6) and 0.031 (6) Å]. In the crystal, the components are linked by O-H⋯O and O-H⋯N hydrogen bonds, generating [010] chains. C-H⋯O inter-actions are also observed.

19.
Acta Crystallogr A ; 68(Pt 2): 244-55, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22338659

RESUMO

Quite recently two papers have been published [Giacovazzo & Mazzone (2011). Acta Cryst. A67, 210-218; Giacovazzo et al. (2011). Acta Cryst. A67, 368-382] which calculate the variance in any point of an electron-density map at any stage of the phasing process. The main aim of the papers was to associate a standard deviation to each pixel of the map, in order to obtain a better estimate of the map reliability. This paper deals with the covariance estimate between points of an electron-density map in any space group, centrosymmetric or non-centrosymmetric, no matter the correlation between the model and target structures. The aim is as follows: to verify if the electron density in one point of the map is amplified or depressed as an effect of the electron density in one or more other points of the map. High values of the covariances are usually connected with undesired features of the map. The phases are the primitive random variables of our probabilistic model; the covariance changes with the quality of the model and therefore with the quality of the phases. The conclusive formulas show that the covariance is also influenced by the Patterson map. Uncertainty on measurements may influence the covariance, particularly in the final stages of the structure refinement; a general formula is obtained taking into account both phase and measurement uncertainty, valid at any stage of the crystal structure solution.

20.
Org Biomol Chem ; 10(10): 1962-5, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22286638

RESUMO

Herein we report a new straightforward synthesis of cis and trans 2,5-disubstituted N,N-dialkylpiperazines, even in enantioenriched form, by reacting non-activated N-alkyl arylaziridines in the presence of a catalytic amount of a Lewis acid. A stereochemical and NMR investigation revealed useful mechanistic insights for this process.


Assuntos
Aziridinas/química , Piperazinas/química , Aziridinas/síntese química , Catálise , Ácidos de Lewis/química , Espectroscopia de Ressonância Magnética , Piperazinas/síntese química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...