Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(2): L022301, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491651

RESUMO

Collective variables (CVs) are low-dimensional projections of high-dimensional system states. They are used to gain insights into complex emergent dynamical behaviors of processes on networks. The relation between CVs and network measures is not well understood and its derivation typically requires detailed knowledge of both the dynamical system and the network topology. In this Letter, we present a data-driven method for algorithmically learning and understanding CVs for binary-state spreading processes on networks of arbitrary topology. We demonstrate our method using four example networks: the stochastic block model, a ring-shaped graph, a random regular graph, and a scale-free network generated by the Albert-Barabási model. Our results deliver evidence for the existence of low-dimensional CVs even in cases that are not yet understood theoretically.

2.
Phys Biol ; 20(4)2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37184431

RESUMO

The mechanisms by which a protein's 3D structure can be determined based on its amino acid sequence have long been one of the key mysteries of biophysics. Often simplistic models, such as those derived from geometric constraints, capture bulk real-world 3D protein-protein properties well. One approach is using protein contact maps (PCMs) to better understand proteins' properties. In this study, we explore the emergent behaviour of contact maps for different geometrically constrained models and compare them to real-world protein systems. Specifically, we derive an analytical approximation for the distribution of amino acid distances, denoted asP(s), using a mean-field approach based on a geometric constraint model. This approximation is then validated for amino acid distance distributions generated from a 2D and 3D version of the geometrically constrained random interaction model. For real protein data, we show how the analytical approximation can be used to fit amino acid distance distributions of protein chain lengths ofL ≈ 100,L ≈ 200, andL ≈ 300 generated from two different methods of evaluating a PCM, a simple cutoff based method and a shadow map based method. We present evidence that geometric constraints are sufficient to model the amino acid distance distributions of protein chains in bulk and amino acid sequences only play a secondary role, regardless of the definition of the PCM.


Assuntos
Dobramento de Proteína , Proteínas , Conformação Proteica , Proteínas/química , Aminoácidos/química , Sequência de Aminoácidos
3.
Sci Rep ; 12(1): 10880, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760885

RESUMO

Ride-pooling (or ride-sharing) services combine trips of multiple customers along similar routes into a single vehicle. The collective dynamics of the fleet of ride-pooling vehicles fundamentally underlies the efficiency of these services. In simplified models, the common features of these dynamics give rise to scaling laws of the efficiency that are valid across a wide range of street networks and demand settings. However, it is unclear how constraints of the vehicle fleet impact such scaling laws. Here, we map the collective dynamics of capacity-constrained ride-pooling fleets to services with unlimited passenger capacity and identify an effective fleet size of available vehicles as the relevant scaling parameter characterizing the dynamics. Exploiting this mapping, we generalize the scaling laws of ride-pooling efficiency to capacity-constrained fleets. We approximate the scaling function with a queueing theoretical analysis of the dynamics in a minimal model system, thereby enabling mean-field predictions of required fleet sizes in more complex settings. These results may help to transfer insights from existing ride-pooling services to new settings or service locations.

4.
Eur Phys J Spec Top ; 230(16-17): 3273-3280, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34221247

RESUMO

The epidemic threshold of a social system is the ratio of infection and recovery rate above which a disease spreading in it becomes an epidemic. In the absence of pharmaceutical interventions (i.e. vaccines), the only way to control a given disease is to move this threshold by non-pharmaceutical interventions like social distancing, past the epidemic threshold corresponding to the disease, thereby tipping the system from epidemic into a non-epidemic regime. Modeling the disease as a spreading process on a social graph, social distancing can be modeled by removing some of the graphs links. It has been conjectured that the largest eigenvalue of the adjacency matrix of the resulting graph corresponds to the systems epidemic threshold. Here we use a Markov chain Monte Carlo (MCMC) method to study those link removals that do well at reducing the largest eigenvalue of the adjacency matrix. The MCMC method generates samples from the relative canonical network ensemble with a defined expectation value of λ max . We call this the "well-controlling network ensemble" (WCNE) and compare its structure to randomly thinned networks with the same link density. We observe that networks in the WCNE tend to be more homogeneous in the degree distribution and use this insight to define two ad-hoc removal strategies, which also substantially reduce the largest eigenvalue. A targeted removal of 80% of links can be as effective as a random removal of 90%, leaving individuals with twice as many contacts. Finally, by simulating epidemic spreading via either an SIS or an SIR model on network ensembles created with different link removal strategies (random, WCNE, or degree-homogenizing), we show that tipping from an epidemic to a non-epidemic state happens at a larger critical ratio between infection rate and recovery rate for WCNE and degree-homogenized networks than for those obtained by random removals.

5.
PLoS One ; 15(2): e0229230, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32106258

RESUMO

The intricate three-dimensional geometries of protein tertiary structures underlie protein function and emerge through a folding process from one-dimensional chains of amino acids. The exact spatial sequence and configuration of amino acids, the biochemical environment and the temporal sequence of distinct interactions yield a complex folding process that cannot yet be easily tracked for all proteins. To gain qualitative insights into the fundamental mechanisms behind the folding dynamics and generic features of the folded structure, we propose a simple model of structure formation that takes into account only fundamental geometric constraints and otherwise assumes randomly paired connections. We find that despite its simplicity, the model results in a network ensemble consistent with key overall features of the ensemble of Protein Residue Networks we obtained from more than 1000 biological protein geometries as available through the Protein Data Base. Specifically, the distribution of the number of interaction neighbors a unit (amino acid) has, the scaling of the structure's spatial extent with chain length, the eigenvalue spectrum and the scaling of the smallest relaxation time with chain length are all consistent between model and real proteins. These results indicate that geometric constraints alone may already account for a number of generic features of protein tertiary structures.


Assuntos
Aminoácidos/química , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas/química , Algoritmos , Aminoácidos/metabolismo , Humanos , Modelos Moleculares , Dobramento de Proteína , Proteínas/metabolismo
6.
Phys Rev Lett ; 125(24): 248302, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33412010

RESUMO

Ride-sharing services may substantially contribute to future sustainable mobility. Their collective dynamics intricately depend on the topology of the underlying street network, the spatiotemporal demand distribution, and the dispatching algorithm. The efficiency of ride-sharing fleets is thus hard to quantify and compare in a unified way. Here, we derive an efficiency observable from the collective nonlinear dynamics and show that it exhibits a universal scaling law. For any given dispatcher, we find a common scaling that yields data collapse across qualitatively different topologies of model networks and empirical street networks from cities, islands, and rural areas. A mean-field analysis confirms this view and reveals a single scaling parameter that jointly captures the influence of network topology and demand distribution. These results further our conceptual understanding of the collective dynamics of ride-sharing fleets and support the evaluation of ride-sharing services and their transfer to previously unserviced regions or unprecedented demand patterns.


Assuntos
Condução de Veículo/normas , Modelos Estatísticos , Meios de Transporte/estatística & dados numéricos , Algoritmos , Automóveis/estatística & dados numéricos , Humanos , Dinâmica não Linear , Redes Sociais Online
7.
Phys Rev Lett ; 121(13): 138301, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30312048

RESUMO

Transition points mark qualitative changes in the macroscopic properties of large complex systems. Explosive transitions, exhibiting properties of both continuous and discontinuous phase transitions, have recently been uncovered in network growth processes. Real networks not only grow but often also restructure; yet common network restructuring processes, such as small world rewiring, do not exhibit phase transitions. Here, we uncover a class of intrinsically discontinuous transitions emerging in network restructuring processes controlled by adhesion-the preference of a chosen link to remain connected to its end node. Deriving a master equation for the temporal network evolution and working out an analytic solution, we identify genuinely discontinuous transitions in nongrowing networks, separating qualitatively distinct phases with monotonic and with peaked degree distributions. Intriguingly, our analysis of empirical data indicates a separation between the same two forms of degree distributions distinguishing abstract from face-to-face social networks.


Assuntos
Modelos Teóricos , Comportamento Social , Apoio Social , Animais , Humanos
8.
Chaos ; 27(3): 035802, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28364754

RESUMO

Spatial networks have recently attracted great interest in various fields of research. While the traditional network-theoretic viewpoint is commonly restricted to their topological characteristics (often disregarding the existing spatial constraints), this work takes a geometric perspective, which considers vertices and edges as objects in a metric space and quantifies the corresponding spatial distribution and alignment. For this purpose, we introduce the concept of edge anisotropy and define a class of measures characterizing the spatial directedness of connections. Specifically, we demonstrate that the local anisotropy of edges incident to a given vertex provides useful information about the local geometry of geophysical flows based on networks constructed from spatio-temporal data, which is complementary to topological characteristics of the same flow networks. Taken both structural and geometric viewpoints together can thus assist the identification of underlying flow structures from observations of scalar variables.

9.
Phys Rev Lett ; 117(16): 168301, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27792385

RESUMO

Geometric constraints impact the formation of a broad range of spatial networks, from amino acid chains folding to proteins structures to rearranging particle aggregates. How the network of interactions dynamically self-organizes in such systems is far from fully understood. Here, we analyze a class of spatial network formation processes by introducing a mapping from geometric to graph-theoretic constraints. Combining stochastic and mean field analyses yields an algebraic scaling law for the extent (graph diameter) of the resulting networks with system size, in contrast to logarithmic scaling known for networks without constraints. Intriguingly, the exponent falls between that of self-avoiding random walks and that of space filling arrangements, consistent with experimentally observed scaling of the radius of gyration of protein tertiary structures with their chain length.


Assuntos
Estrutura Terciária de Proteína , Proteínas/química , Algoritmos
10.
PLoS One ; 11(4): e0153703, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27128846

RESUMO

Complex network theory provides an elegant and powerful framework to statistically investigate different types of systems such as society, brain or the structure of local and long-range dynamical interrelationships in the climate system. Network links in climate networks typically imply information, mass or energy exchange. However, the specific connection between oceanic or atmospheric flows and the climate network's structure is still unclear. We propose a theoretical approach for verifying relations between the correlation matrix and the climate network measures, generalizing previous studies and overcoming the restriction to stationary flows. Our methods are developed for correlations of a scalar quantity (temperature, for example) which satisfies an advection-diffusion dynamics in the presence of forcing and dissipation. Our approach reveals that correlation networks are not sensitive to steady sources and sinks and the profound impact of the signal decay rate on the network topology. We illustrate our results with calculations of degree and clustering for a meandering flow resembling a geophysical ocean jet.


Assuntos
Clima , Algoritmos , Difusão , Fenômenos Geológicos , Modelos Teóricos , Temperatura
11.
Sci Rep ; 4: 4119, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24535026

RESUMO

Complex network approaches have recently been applied to continuous spatial dynamical systems, like climate, successfully uncovering the system's interaction structure. However the relationship between the underlying atmospheric or oceanic flow's dynamics and the estimated network measures have remained largely unclear. We bridge this crucial gap in a bottom-up approach and define a continuous analytical analogue of Pearson correlation networks for advection-diffusion dynamics on a background flow. Analysing complex networks of prototypical flows and from time series data of the equatorial Pacific, we find that our analytical model reproduces the most salient features of these networks and thus provides a general foundation of climate networks. The relationships we obtain between velocity field and network measures show that line-like structures of high betweenness mark transition zones in the flow rather than, as previously thought, the propagation of dynamical information.

12.
Phys Rev Lett ; 106(7): 078102, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21405545

RESUMO

We introduce a novel generalization of the discrete nonlinear Schrödinger equation. It supports solitons that we utilize to model chiral polymers in the collapsed phase and, in particular, proteins in their native state. As an example we consider the villin headpiece HP35, an archetypal protein for testing both experimental and theoretical approaches to protein folding. We use its backbone as a template to explicitly construct a two-soliton configuration. Each of the two solitons describe well over 7.000 supersecondary structures of folded proteins in the Protein Data Bank with sub-angstrom accuracy suggesting that these solitons are common in nature.


Assuntos
Dinâmica não Linear , Proteínas/química , Animais , Proteínas dos Microfilamentos/química , Modelos Moleculares , Polímeros/química , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...