Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; : e202400198, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39079047

RESUMO

Commercial SSZ-13 zeolite with different n(Si)/n(Al) ratios and from different suppliers were subjected to a post-synthetic treatment in order to create mesopores of up to 10 nm. Furthermore, the materials were modified with copper ions and thoroughly physico-chemically characterized. The modified textural properties varied the nature of copper species, and thus, activity in the selective catalytic reduction of NOx with ammonia (NH3-SCR-DeNOx). Pulsed-field gradient nuclear magnetic resonance (PFG-NMR) studies with hexane as probe liquid revealed improved intracrystalline diffusion for some Cu-containing SSZ-13 materials. The NH3-SCR-DeNOx pathway is verified viain situ DR UV-Vis, in situ FT-IR and EPR, temperature-programmed studies as well as SSITKA studies that provide a mechanistic understanding of the reaction. Kinetic modelling results demonstrate the highest NH3-SCR-DeNOx reaction rates and up to 20 % lower energy barriers with n(Si)/n(Al) ratio of 6.5 for all modified forms (i.e., (NH4)Cu-SSZ-13_6.5 and Cu-SSZ-13_6.5_NaOH/0.1) and cause only negligible parasitic ammonia oxidation. The modelling of the stop-flow experiments further demonstrates that the SCR pathway via the HONO surface intermediate is present but barely contributes to the overall NO conversion compared to the dominant path between adsorbed NH3 and NO from the gas phase.

2.
Materials (Basel) ; 15(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35888236

RESUMO

The selective catalytic oxidation of NH3 (NH3-SCO) into N2 and H2O is an efficient technology for NH3 abatement in diesel vehicles. However, the catalysts dedicated to NH3-SCO are still under development. One of the groups of such catalysts constituted transition metal-based catalysts, including hydrotalcite-derived mixed metal oxides. This class of materials is characterized by tailored composition, homogenously dispersed mixed metal oxides, exhibiting high specific surface area and thermal stability. Thus, firstly, we give a short introduction to the structure and composition of hydrotalcite-like materials and their applications in NH3-SCO. Secondly, an overview of other transition metal-based catalysts reported in the literature is given, following a comparison of both groups. The challenges in NH3-SCO applications are provided, while the reaction mechanisms are discussed for particular systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA