Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(5): e0233428, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32433674

RESUMO

To evaluate the hormetic effect of glyphosate on Echinochloa colona, two pot studies were done in the screenhouse at the Gatton Campus, the University of Queensland, Australia. Glyphosate was sprayed at the 3-4 leaf stage using different doses [(0, 5, 10, 20, 40, 80 and 800 g a.e. ha-1) and (0, 2.5, 5, 10, 20 and 800 g a.e. ha-1)] in the first and second study, respectively. In the second study, two soil moistures (adequately-watered and water-stressed), and two E. colona biotypes, glyphosate-resistant and glyphosate-susceptible, were included. In both studies, plants that were treated with glyphosate at 2.5-40 g ha-1 grew taller and produced more leaves, tillers, inflorescences and seeds than the control treatment. In the first study, 5 g ha-1 glyphosate resulted in the maximum aboveground biomass (increase of 34% to 118%) compared with the control treatment. In the second study, the adequately-watered and glyphosate low dose treatments caused an increase in all the measured growth parameters for both biotypes. For example, total dry biomass was increased by 64% and 54% at 5 g ha-1 in the adequately-watered treatments for the resistant and susceptible biotypes, respectively, compared with the control treatment. All measured traits tended to decrease with increasing water stress and the stimulative growth of low doses of glyphosate could not compensate for the water stress effect. The results of both studies showed a hormetic effect of low doses of glyphosate on E. colona biotypes and such growth stimulation was significant in the range of 5 to 10 g ha-1 glyphosate. Water availability was found to be effective in modulating the stimulatory outcomes of glyphosate-induced hormesis. No significant difference was observed between the resistant and susceptible biotypes for hormesis phenomenon. The study showed the importance of precise herbicide application for suppressing weed growth and herbicide resistance evolution.


Assuntos
Echinochloa/efeitos dos fármacos , Glicina/análogos & derivados , Resistência a Herbicidas , Solo/química , Relação Dose-Resposta a Droga , Echinochloa/crescimento & desenvolvimento , Glicina/toxicidade , Herbicidas/toxicidade , Hormese , Água/farmacologia , Glifosato
2.
Sci Rep ; 10(1): 329, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941976

RESUMO

Physiological and growth responses of two Australian Echinochloa colona biotypes (glyphosate-resistant and susceptible, produced from a single population) to different concentrations of carbon dioxide (CO2) (ambient ~450 ppm and elevated ~750 ppm) and soil moisture (well-watered and water-stressed) were analyzed. Elevated CO2 and well-watered conditions resulted in E. colona plants with greater biomass, height and numbers of tillers and leaves in both biotypes; however, no significant response was observed for seed production or the amount of photosynthesis pigments with increasing CO2 at both soil moisture levels. In addition, water availability was more influential for growth than CO2 concentration. The mean shoot biomass of the susceptible biotype under elevated CO2 and well-watered conditions was significantly greater than the resistant biotype. Although the susceptible biotype showed more vegetative and reproductive growth than the resistant biotype, no significant difference was observed for seed production between the biotypes in the water-stressed condition. In a second experiment, different doses of glyphosate (0, 180, 360, 720 and 1440 g a.e ha-1) were applied to both biotypes grown at two soil moisture levels (well-watered and water-stressed). In the water-stressed condition, glyphosate efficacy was decreased in both biotypes. The resistant biotype in the well-watered condition had only 19% survival at 1440 g ha-1 glyphosate (double the recommended rate), but this value increased in the water-stressed condition by 62%. Our study suggests that future climate change can affect the physiological and growth processes of weeds and their responses to herbicides. Knowledge of their adapting behaviors will be critical to weed management strategies.


Assuntos
Dióxido de Carbono/metabolismo , Echinochloa/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/farmacologia , Solo/química , Biomassa , Echinochloa/crescimento & desenvolvimento , Echinochloa/metabolismo , Glicina/farmacologia , Resistência a Herbicidas , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Água/química , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA