Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(34): e202307540, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37326432

RESUMO

Operationally simple strategies to assemble boron containing organic frameworks are highly enabling in organic synthesis. While conventional retrosynthetic logic has engendered many platforms focusing on the direct formation of C-B bonds, α-boryl radicals have recently reemerged as versatile open-shell alternatives to access organoborons via adjacent C-C bond formation. Direct light-enabled α-activation is currently contingent on photo- or transition metal-catalysis activation to efficiently generate radical species. Here, we disclose a facile activation of α-halo boronic esters using only visible light and a simple Lewis base to enable homolytic scission. Intermolecular addition to styrenes facilitates the rapid construction of highly versatile E-allylic boronic esters. The simplicity of activation permits the strategic merger of this construct with selective energy transfer catalysis to enable the complimentary stereodivergent synthesis of Z-allylic boronic esters.

2.
Angew Chem Int Ed Engl ; 61(38): e202207067, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-35748797

RESUMO

Recently the fruitful merger of organoboron chemistry and photocatalysis has come to the forefront of organic synthesis, resulting in the development of new technologies to access complex (non)borylated frameworks. Central to the success of this combination is control of boron hybridisation. Contingent on the photoactivation mode, boron as its neutral planar form or tetrahedral boronate can be used to regulate reactivity. This Minireview highlights the current state of the art in photocatalytic processes utilising organoboron compounds, paying particular attention to the role of boron hybridisation for the target transformation.

3.
Chem Rev ; 122(2): 2650-2694, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34449198

RESUMO

Geometrical E → Z alkene isomerization is intimately entwined in the historical fabric of organic photochemistry and is enjoying a renaissance (Roth et al. Angew. Chem., Int. Ed. Engl. 1989 28, 1193-1207). This is a consequence of the fundamental stereochemical importance of Z-alkenes, juxtaposed with frustrations in thermal reactivity that are rooted in microscopic reversibility. Accessing excited state reactivity paradigms allow this latter obstacle to be circumnavigated by exploiting subtle differences in the photophysical behavior of the substrate and product chromophores: this provides a molecular basis for directionality. While direct irradiation is operationally simple, photosensitization via selective energy transfer enables augmentation of the alkene repertoire to include substrates that are not directly excited by photons. Through sustained innovation, an impressive portfolio of tailored small molecule catalysts with a range of triplet energies are now widely available to facilitate contra-thermodynamic and thermo-neutral isomerization reactions to generate Z-alkene fragments. This review is intended to serve as a practical guide covering the geometric isomerization of alkenes enabled by energy transfer catalysis from 2000 to 2020, and as a logical sequel to the excellent treatment by Dugave and Demange (Chem. Rev. 2003 103, 2475-2532). The mechanistic foundations underpinning isomerization selectivity are discussed together with induction models and rationales to explain the counterintuitive directionality of these processes in which very small energy differences distinguish substrate from product. Implications for subsequent stereospecific transformations, application in total synthesis, regioselective polyene isomerization, and spatiotemporal control of pre-existing alkene configuration in a broader sense are discussed.


Assuntos
Alcenos , Alcenos/química , Catálise , Transferência de Energia , Isomerismo , Fotoquímica
4.
Angew Chem Int Ed Engl ; 61(2): e202113600, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34748684

RESUMO

Examples of geometric alkene isomerization in nature are often limited to the net exergonic direction (ΔG°<0), with the antipodal net endergonic processes (ΔG°>0) comparatively under-represented. Inspired by the expansiveness of the maleate to fumarate (Z→E) isomerization in biochemistry, we investigated the inverse E→Z variant to validate nO →πC=O * interactions as a driving force for contra-thermodynamic isomerization. A general protocol involving selective energy transfer catalysis with inexpensive thioxanthone as a sensitizer (λmax =402 nm) is disclosed. Whilst in the enzymatic process nO →πC=O * interactions commonly manifest themselves in the substrate, these same interactions are shown to underpin directionality in the antipodal reaction by shortening the product alkene chromophore. The process was validated with diverse fumarate derivatives (>30 examples, up to Z:E>99:1), including the first examples of tetrasubstituted alkenes, and the involvement of nO →πC=O * interactions was confirmed by X-ray crystallography.

5.
Angew Chem Int Ed Engl ; 60(12): 6430-6434, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33427355

RESUMO

An I(I)/(III) catalysis strategy to construct an enantioenriched fluorinated isostere of the i Pr group is reported. The difluorination of readily accessible α-CF3 -styrenes is enabled by the in situ generation of a chiral ArIF2 species to forge a stereocentre with the substituents F, CH2 F and CF3 (up to 95 %, >20:1 vicinal:geminal difluorination). The replacement of the metabolically labile benzylic proton results in a highly preorganised scaffold as was determined by X-ray crystallography (π→σ* and stereoelectronic gauche σ→σ* interactions). A process of catalyst editing is disclosed in which preliminary validation of enantioselectivity is placed on a structural foundation.

6.
Angew Chem Int Ed Engl ; 60(2): 685-689, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-32975367

RESUMO

Modular ß-borylacrylates have been validated as programmable, ambiphilic C3 -synthons in the cascade annulation of 2-halo-phenol derivatives to generate structurally and electronically diverse coumarins. Key to this [3+3] disconnection is the BPin unit which serves a dual purpose as both a traceless linker for C(sp2 )-C(sp2 ) coupling, and as a chromophore extension to enable inversion of the alkene geometry via selective energy transfer catalysis. Mild isomerisation is a pre-condition to access 3-substituted coumarins and provides a handle for divergence. The method is showcased in the synthesis of representative natural products that contain this venerable chemotype. Facile entry into π-expanded estrone derivatives modified at the A-ring is disclosed to demonstrate the potential of the method in bioassay development or in drug repurposing.

7.
Science ; 369(6501): 302-306, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32675371

RESUMO

Isomerization-based strategies to enable the stereodivergent construction of complex polyenes from geometrically defined alkene linchpins remain conspicuously underdeveloped. Mitigating the thermodynamic constraints inherent to isomerization is further frustrated by the considerations of atom efficiency in idealized low-molecular weight precursors. In this work, we report a general ambiphilic C3 scaffold that can be isomerized and bidirectionally extended. Predicated on highly efficient triplet energy transfer, the selective isomerization of ß-borylacrylates is contingent on the participation of the boron p orbital in the substrate chromophore. Rotation of the C(sp2)-B bond by 90° in the product renders re-excitation inefficient and endows directionality. This subtle stereoelectronic gating mechanism enables the stereocontrolled syntheses of well-defined retinoic acid derivatives.

8.
Chemistry ; 26(53): 12249-12255, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32539163

RESUMO

A catalytic enantioselective synthesis of heterocyclic vicinal fluoroamines is reported. A chiral Brønsted acid promotes aza-Michael addition to fluoroalkenyl heterocycles to give a prochiral enamine intermediate that undergoes asymmetric protonation upon rearomatization. The reaction accommodates a range of azaheterocycles and nucleophiles, generating the C-F stereocentre in high enantioselectivity, and is also amenable to stereogenic C-CF3 bonds. Extensive DFT calculations provided evidence for stereocontrolled proton transfer from catalyst to substrate as the rate-determining step, and showed the importance of steric interactions from the catalyst's alkyl groups in enforcing the high enantioselectivity. Crystal structure data show the dominance of noncovalent interactions in the core structure conformation, enabling modulation of the conformational landscape. Ramachandran-type analysis of conformer distribution and Protein Data Bank mining indicated that benzylic fluorination by this approach has the potential to improve the potency of several marketed drugs.

9.
Org Lett ; 21(24): 10164-10168, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31820651

RESUMO

Light-enabled enantiodivergence is demonstrated in which the alkene substrate configuration is manipulated (E → Z) prior to organocatalytic reduction with a chiral thiourea and Hantzsch ester. This allows stereodivergent reduction to be regulated at the substrate level with high fidelity and mitigates the need for a second, enantiomeric catalyst (up to 93:07 and 95:5 er). The synthetic utility of this strategy has been demonstrated in the synthesis of the weight-loss drug (R)-Lorcaserin (Belviq) and a potent AMPA modulator.

10.
Angew Chem Int Ed Engl ; 58(51): 18619-18626, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31541612

RESUMO

An efficient geometrical E→Z isomerisation of alkenyl silanes is disclosed via selective energy transfer using an inexpensive organic sensitiser. Characterised by operational simplicity, short reaction times (2 h), and broad substrate tolerance, the reaction displays high selectivity for trisubstituted systems (Z/E up to 95:5). In contrast to thermal activation, directionality results from deconjugation of the π-system in the Z-isomer due to A1,3 -strain thereby inhibiting re-activation. The structural importance of the ß-substituent logically prompted an investigation of mixed bis-nucleophiles (Si, Sn, B). These versatile linchpins also undergo facile isomerisation, thereby enabling a formal anti-metallometallation. Mechanistic interrogation, supported by a theoretical investigation, is disclosed together with application of the products to the stereospecific synthesis of biologically relevant target structures.

11.
Angew Chem Int Ed Engl ; 58(39): 13654-13664, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31233259

RESUMO

Strategies to achieve spatiotemporal regulation of pre-existing alkenes via external stimuli are essential given the ubiquity of feedstock olefins in chemistry and their downstream applications. Mirroring the 1-0 switch that underpins mammalian vision through selective geometric isomerisation in retinal, strategies to manipulate 2D space by both geometric and positional isomerisation of alkenes via chemical, thermal and light-driven processes are being intensively pursued. This minireview highlights the current state of the art in activating and achieving directionality in these fundamental chemical transformations.

12.
Org Lett ; 21(7): 2488-2492, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30908055

RESUMO

An investigation into the mechanism of Cu-catalyzed aryl boronic acid halodeboronation using electrophilic halogen reagents is reported. Evidence is provided to show that this takes place via a boronate-driven ipso-substitution pathway and that Cu is not required for these processes to operate: general Lewis base catalysis is operational. This in turn allows the rational development of a general, simple, and effective base-catalyzed halodeboronation that is amenable to the preparation of 125I-labeled products for SPECT applications.

13.
Angew Chem Int Ed Engl ; 57(50): 16431-16435, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30255972

RESUMO

The enantioselective, catalytic vicinal difluorination of alkenes is reported by II /IIII catalysis using a novel, C2 -symmetric resorcinol derivative. Catalyst turnover via in situ generation of an ArIIII F2 species is enabled by Selectfluor oxidation and addition of an inexpensive HF-amine complex. The HF:amine ratio employed in this process provides a handle for regioselective orthogonality as a function of Brønsted acidity. Selectivity reversal from the 1,1-difluorination pathway (geminal) to the desired 1,2-difluorination (vicinal) is disclosed (>20:1 in both directions). Validation with electron deficient styrenes facilitates generation of chiral bioisosteres of the venerable CF3 unit that is pervasive in drug discovery (20 examples, up to 94:06 e.r.). An achiral variant of the reaction is also presented using p-TolI (up to >95 % yield).

14.
Angew Chem Int Ed Engl ; 57(12): 3168-3172, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29393569

RESUMO

Designing strategies to access stereodefined olefinic organoboron species is an important synthetic challenge. Despite significant advances, there is a striking paucity of routes to Z-α-substituted styrenyl organoborons. Herein, this strategic imbalance is redressed by exploiting the polarity of the C(sp2 )-B bond to activate the neighboring π system, thus enabling a mild, traceless photocatalytic isomerization of readily accessible E-α-substituted styrenyl BPins to generate the corresponding Z-isomers with high fidelity. Preliminary validation of this contra-thermodynamic E→Z isomerization is demonstrated in a series of stereoretentive transformations to generate Z-configured trisubstituted alkenes, as well as in a concise synthesis of the anti-tumor agent Combretastatin A4.

15.
J Am Chem Soc ; 140(1): 126-130, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29257859

RESUMO

Ligand metathesis of Pd(II) complexes is mechanistically essential for cross-coupling. We present a study of halide→OH anion metathesis of (Ar)PdII complexes using vinylBPin as a bifunctional chemical probe with Pd(II)-dependent cross-coupling pathways. We identify the variables that profoundly impact this event and allow control to be leveraged. This then allows control of cross-coupling pathways via promotion or inhibition of organoboron transmetalation, leading to either Suzuki-Miyaura or Mizoroki-Heck products. We show how this transmetalation switch can be used to synthetic gain in a cascade cross-coupling/Diels-Alder reaction, delivering borylated or non-borylated carbocycles, including steroid-like scaffolds.

16.
Chem Sci ; 8(2): 1551-1559, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28572912

RESUMO

We report the direct chemoselective Brown-type oxidation of aryl organoboron systems containing two oxidizable boron groups. Basic biphasic reaction conditions enable selective formation and phase transfer of a boronic acid trihydroxyboronate in the presence of boronic acid pinacol (BPin) esters, while avoiding speciation equilibria. Spectroscopic investigations validate a base-promoted phase-selective discrimination of organoboron species. This phenomenon is general across a broad range of organoboron compounds and can also be used to invert conventional protecting group strategies, enabling chemoselective oxidation of BMIDA species over normally more reactive BPin substrates. We also demonstrate the selective oxidation of diboronic acid systems with chemoselectivity predictable a priori. The utility of this method is exemplified through the development of a chemoselective oxidative nucleophile coupling.

17.
Angew Chem Int Ed Engl ; 54(34): 9976-9, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26136166

RESUMO

Control of boronic acid speciation is presented as a strategy to achieve nucleophile chemoselectivity in the Suzuki-Miyaura reaction. Combined with simultaneous control of oxidative addition and transmetalation, this enables chemoselective formation of two C-C bonds in a single operation, providing a method for the rapid preparation of highly functionalized carbogenic frameworks.


Assuntos
Derivados de Benzeno/síntese química , Ácidos Borônicos/química , Compostos Organometálicos/química , Derivados de Benzeno/química , Catálise , Estrutura Molecular
18.
Org Biomol Chem ; 13(10): 3093-102, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25628154

RESUMO

A modular synthesis of functionalised biaryl phenols from two boronic acid derivatives has been developed via one-pot Suzuki-Miyaura cross-coupling, chemoselective control of boron solution speciation to generate a reactive boronic ester in situ, and oxidation. The utility of this method has been further demonstrated by application in the synthesis of drug molecules and components of organic electronics, as well as within iterative cross-coupling.


Assuntos
Boro/química , Fenóis/química , Fenóis/síntese química , Catálise , Desenho de Fármacos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Oxidantes/química , Oxigênio/química , Fenol/química , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...