Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Brain Stimul ; 16(2): 540-552, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36731773

RESUMO

BACKGROUND: Focused ultrasound stimulation (FUS) has the potential to provide non-invasive neuromodulation of deep brain regions with unparalleled spatial precision. However, the cellular and molecular consequences of ultrasound stimulation on neurons remains poorly understood. We previously reported that ultrasound stimulation induces increases in neuronal excitability that persist for hours following stimulation in vitro. In the present study we sought to further elucidate the molecular mechanisms by which ultrasound regulates neuronal excitability and synaptic function. OBJECTIVES: To determine the effect of ultrasound stimulation on voltage-gated ion channel function and synaptic plasticity. METHODS: Primary rat cortical neurons were exposed to a 40 s, 200 kHz pulsed ultrasound stimulus or sham-stimulus. Whole-cell patch clamp electrophysiology, quantitative proteomics and high-resolution confocal microscopy were employed to determine the effects of ultrasound stimulation on molecular regulators of neuronal excitability and synaptic function. RESULTS: We find that ultrasound exposure elicits sustained but reversible increases in whole-cell potassium currents. In addition, we find that ultrasound exposure activates synaptic signalling cascades that result in marked increases in excitatory synaptic transmission. Finally, we demonstrate the requirement of ionotropic glutamate receptor (AMPAR/NMDAR) activation for ultrasound-induced modulation of neuronal potassium currents. CONCLUSION: These results suggest specific patterns of pulsed ultrasound can induce contemporaneous enhancement of both neuronal excitability and synaptic function, with implications for the application of FUS in experimental and therapeutic settings. Further study is now required to deduce the precise molecular mechanisms through which these changes occur.


Assuntos
Potássio , Receptores Ionotrópicos de Glutamato , Ratos , Animais , Potássio/metabolismo , Potássio/farmacologia , Ratos Sprague-Dawley , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Plasticidade Neuronal
2.
Cereb Cortex ; 33(5): 2342-2360, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35732315

RESUMO

AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-methyl-d-aspartate) glutamate receptors are driving forces for synaptic transmission and plasticity at neocortical synapses. However, their distribution pattern in the adult rat neocortex is largely unknown and was quantified using freeze fracture replication combined with postimmunogold-labeling. Both receptors were co-localized at layer (L)4 and L5 postsynaptic densities (PSDs). At L4 dendritic shaft and spine PSDs, the number of gold grains detecting AMPA was similar, whereas at L5 shaft PSDs AMPA-receptors outnumbered those on spine PSDs. Their number was significantly higher at L5 vs. L4 PSDs. At L4 and L5 dendritic shaft PSDs, the number of gold grains detecting GluN1 was ~2-fold higher than at spine PSDs. The number of gold grains detecting the GluN1-subunit was higher for both shaft and spine PSDs in L5 vs. L4. Both receptors showed a large variability in L4 and L5. A high correlation between the number of gold grains and PSD size for both receptors and targets was observed. Both receptors were distributed over the entire PSD but showed a layer- and target-specific distribution pattern. The layer- and target-specific distribution of AMPA and GluN1 glutamate receptors partially contribute to the observed functional differences in synaptic transmission and plasticity in the neocortex.


Assuntos
Ácido Glutâmico , Receptores de N-Metil-D-Aspartato , Ratos , Animais , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido Glutâmico/metabolismo , N-Metilaspartato/metabolismo , Córtex Somatossensorial/metabolismo , Elétrons , Receptores de Glutamato/metabolismo , Sinapses/metabolismo
4.
Org Biomol Chem ; 19(42): 9154-9162, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34642722

RESUMO

(-)-Arctigenin and a series of new analogues have been synthesised and then tested for their potential as AMPA and kainate receptor antagonists of human homomeric GluA1 and GluK2 receptors expressed in HEK293 cells using a Ca2+ influx assay. In general, these compounds showed antagonist activity at both receptors with greater activity evident at AMPARs. Schild analysis indicates that a spirocyclic analogue 6c acts as a non-competitive antagonist. Molecular docking studies in which 6c was docked into the X-ray crystal structure of the GluA2 tetramer suggest that (-)-arctigenin and its analogues bind in the transmembrane domain in a similar manner to the known AMPA receptor non-competitive antagonists GYKI53655 and the antiepileptic drug perampanel. The arctigenin derivatives described herein may serve as novel leads for the development of drugs for the treatment of epilepsy.


Assuntos
Receptores de Ácido Caínico
5.
Neuropharmacology ; 198: 108743, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34363811

RESUMO

In 1981 Jeff Watkins and Dick Evans wrote what was to become a seminal review on excitatory amino acids (EAAs) and their receptors (Watkins and Evans, 1981). Bringing together various lines of evidence dating back over several decades on: the distribution in the nervous system of putative amino acid neurotransmitters; enzymes involved in their production and metabolism; the uptake and release of amino acids; binding of EAAs to membranes; the pharmacological action of endogenous excitatory amino acids and their synthetic analogues, and notably the actions of antagonists for the excitations caused by both nerve stimulation and exogenous agonists, often using pharmacological tools developed by Jeff and his colleagues, they provided a compelling account for EAAs, especially l-glutamate, as a bona fide neurotransmitter in the nervous system. The rest, as they say, is history, but far from being consigned to history, EAA research is in rude health well into the 21st Century as this series of Special Issues of Neuropharmacology exemplifies. With EAAs and their receptors flourishing across a wide range of disciplines and clinical conditions, we enter into a dialogue with two of the most prominent and influential figures in the early days of EAA research: Jeff Watkins and Dick Evans.


Assuntos
Aminoácidos Excitatórios/fisiologia , Neurotransmissores/fisiologia , Receptores de Glutamato/fisiologia , Animais , Aminoácidos Excitatórios/farmacologia , Humanos , Receptores de Glutamato/efeitos dos fármacos , Sinapses/fisiologia
6.
Front Aging Neurosci ; 12: 577996, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33132900

RESUMO

Synapse loss occurs early in Alzheimer's disease (AD) patients and animal models. Alterations at synaptic level are a major morphological correlate of the memory deficits and related symptoms of AD. Given the predominant roles of synaptic AMPA receptors (AMPARs) in excitatory synaptic transmission in the brain, changes in their dynamic regulation are also implicated in the pathophysiology of AD. Here, we used immunolocalization techniques to analyze the expression and subcellular distribution of AMPARs in the hippocampal region of APP/PS1 mouse model of AD. Immunoblots and histoblots revealed that the total amount of AMPARs and their regional expression pattern in the hippocampus was similar in APP/PS1 mice and in age-matched wild type mice. At the ultrastructural level, two synapse populations were examined using SDS-digested freeze-fracture replica labeling in the stratum radiatum in mice: (i) on spines of CA1 pyramidal cells; and (ii) on randomly found dendritic shafts of CA1 interneurons. While 1- and 6-months-old APP/PS1 mice exhibited no change, we observed a significant reduction at 12 months in AMPAR density at synapses in both pyramidal cells and interneurons, compared to wild-type. This reduction of AMPARs in dendritic spines was accompanied by a significant increase in AMPAR subunit proteins identified in intracellular compartments. Our data demonstrate an age-dependent reduction of synaptic AMPARs in APP/PS1 mice, which may contribute to impaired learning and memory at later stages of AD.

8.
Methods Mol Biol ; 1941: 47-54, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30707426

RESUMO

Glutamate receptors (GluRs) located primarily on the membranes of neurons and glial cells are responsible for excitatory synaptic transmission in the central nervous system. The transport of GluRs to the cell surface is a highly regulated dynamic process that determines neuronal excitability and synaptic responses. The molecular and cellular mechanisms of GluR trafficking are often studied in cell cultures. These studies require sensitive techniques that allow the measurement of total and surface-expressed GluRs in cell populations. The cell-based enzyme-linked immunosorbent assay (cell-ELISA) combines steps of direct immunochemical labelling of cell cultures and ELISA. It can be used for quantitative comparisons of surface-expressed and total protein contents of various cell cultures. While several cell-ELISA protocols are available for different cell types, in this chapter we describe the procedure that we have applied for the investigation of quantitative changes in the cell surface expression of recombinant ionotropic glutamate receptors (iGluRs) in adherent human embryonic kidney 293 (HEK293) cells and endogenous iGluR proteins in primary neuronal cultures.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Neurônios/metabolismo , Receptores de Glutamato/metabolismo , Proteínas Recombinantes/metabolismo , Transmissão Sináptica , Células HEK293 , Humanos
9.
Neurochem Res ; 44(3): 585-599, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30302614

RESUMO

Kainate receptors (KARs) are a subfamily of ionotropic glutamate receptors (iGluRs) mediating excitatory synaptic transmission. Cell surface expressed KARs modulate the excitability of neuronal networks. The transfer of iGluRs from the endoplasmic reticulum (ER) to the cell surface requires occupation of the agonist binding sites. Here we used molecular modelling to produce a range of ligand binding domain (LBD) point mutants of GluK1-3 KAR subunits with and without altered agonist efficacy to further investigate the role of glutamate binding in surface trafficking and activation of homomeric and heteromeric KARs using endoglycosidase digestion, cell surface biotinylation and imaging of changes in intracellular Ca2+ concentration [Ca2+]i. Mutations of conserved amino acid residues in the LBD that disrupt agonist binding to GluK1-3 (GluK1-T675V, GluK2-A487L, GluK2-T659V and GluK3-T661V) reduced both the total expression levels and cell surface delivery of all of these mutant subunits compared to the corresponding wild type in transiently transfected human embryonic kidney 293 (HEK293) cells. In contrast, the exchange of non-conserved residues in the LBD that convert antagonist selectivity of GluK1-3 (GluK1-T503A, GluK2-A487T, GluK3-T489A, GluK1-N705S/S706N, GluK2-S689N/N690S, GluK3-N691S) did not alter the biosynthesis and trafficking of subunit proteins. Co-assembly of mutant GluK2 with an impaired LBD and wild type GluK5 subunits enables the cell surface expression of both subunits. However, [Ca2+]i imaging indicates that the occupancy of both GluK2 and GluK5 LBDs is required for the full activation of GluK2/GluK5 heteromeric KAR channels.


Assuntos
Sítios de Ligação , Ligantes , Transporte Proteico/fisiologia , Receptores de Ácido Caínico/metabolismo , Sítios de Ligação/fisiologia , Membrana Celular/metabolismo , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Mutação/genética , Multimerização Proteica/fisiologia , Subunidades Proteicas/metabolismo , Receptores de Ácido Caínico/genética
10.
Mol Neurobiol ; 55(3): 2013-2024, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28271401

RESUMO

Preterm delivery is associated with neurodevelopmental impairment caused by environmental and genetic factors. Dysfunction of the excitatory amino acid transporter 2 (EAAT2) and the resultant impaired glutamate uptake can lead to neurological disorders. In this study, we investigated the role of single nucleotide polymorphisms (SNPs; g.-200C>A and g.-181A>C) in the EAAT2 promoter in susceptibility to brain injury and neurodisability in very preterm infants born at or before 32-week gestation. DNA isolated from newborns' dried blood spots were used for pyrosequencing to detect both SNPs. Association between EAAT2 genotypes and cerebral palsy, cystic periventricular leukomalacia and a low developmental score was then assessed. The two SNPs were concordant in 89.4% of infants resulting in three common genotypes all carrying two C and two A alleles in different combinations. However, in 10.6% of cases, non-concordance was found, generating six additional rare genotypes. The A alleles at both loci appeared to be detrimental and consequently, the risk of developing cerebral palsy increased four- and sixfold for each additional detrimental allele at -200 and -181 bp, respectively. The two SNPs altered the regulation of the EAAT2 promoter activity and glutamate homeostasis. This study highlights the significance of glutamate in the pathogenesis of preterm brain injury and subsequent development of cerebral palsy and neurodevelopmental disabilities. Furthermore, the described EAAT2 SNPs may be an early biomarker of vulnerability to neurodisability and may aid the development of targeted treatment strategies.


Assuntos
Paralisia Cerebral/diagnóstico , Paralisia Cerebral/genética , Variação Genética/genética , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Recém-Nascido Prematuro/fisiologia , Regiões Promotoras Genéticas/genética , Animais , Astrócitos/patologia , Astrócitos/fisiologia , Células Cultivadas , Pré-Escolar , Transportador 2 de Aminoácido Excitatório , Feminino , Humanos , Recém-Nascido , Masculino , Polimorfismo de Nucleotídeo Único/genética , Ratos , Ratos Sprague-Dawley
11.
J Neurochem ; 143(6): 621-623, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29168166

RESUMO

This Editorial highlights a study by Colvin et al. (2017) in the current issue of Journal of Neurochemistry, in which the authors describe the development and characterisation of a new rabbit antibody (termed antibody St. Louis; AbSL) that preferentially recognises amyloid-ß (Aß) protein 42 (Aß42) protofibrils over other Aß species.


Assuntos
Doença de Alzheimer , Amiloide , Peptídeos beta-Amiloides , Animais , Epitopos , Fragmentos de Peptídeos , Coelhos
12.
Brain Struct Funct ; 222(8): 3375-3393, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28397107

RESUMO

The neurotransmitter receptor subtype, number, density, and distribution relative to the location of transmitter release sites are key determinants of signal transmission. AMPA-type ionotropic glutamate receptors (AMPARs) containing GluA3 and GluA4 subunits are prominently expressed in subsets of neurons capable of firing action potentials at high frequencies, such as auditory relay neurons. The auditory nerve (AN) forms glutamatergic synapses on two types of relay neurons, bushy cells (BCs) and fusiform cells (FCs) of the cochlear nucleus. AN-BC and AN-FC synapses have distinct kinetics; thus, we investigated whether the number, density, and localization of GluA3 and GluA4 subunits in these synapses are differentially organized using quantitative freeze-fracture replica immunogold labeling. We identify a positive correlation between the number of AMPARs and the size of AN-BC and AN-FC synapses. Both types of AN synapses have similar numbers of AMPARs; however, the AN-BC have a higher density of AMPARs than AN-FC synapses, because the AN-BC synapses are smaller. A higher number and density of GluA3 subunits are observed at AN-BC synapses, whereas a higher number and density of GluA4 subunits are observed at AN-FC synapses. The intrasynaptic distribution of immunogold labeling revealed that AMPAR subunits, particularly GluA3, are concentrated at the center of the AN-BC synapses. The central distribution of AMPARs is absent in GluA3-knockout mice, and gold particles are evenly distributed along the postsynaptic density. GluA4 gold labeling was homogenously distributed along both synapse types. Thus, GluA3 and GluA4 subunits are distributed at AN synapses in a target-cell-dependent manner.


Assuntos
Nervo Coclear/metabolismo , Núcleo Coclear/metabolismo , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Animais , Nervo Coclear/ultraestrutura , Núcleo Coclear/ultraestrutura , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/metabolismo , Neurônios/ultraestrutura , Subunidades Proteicas , Receptores de AMPA/genética , Sinapses/ultraestrutura
13.
Acta Paediatr ; 105(7): e307-12, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27059438

RESUMO

AIM: The aim of this work was to test whether three single nucleotide polymorphisms (SNPs) implicated in glutamate homoeostasis or signalling and cellular survival are associated with birth condition. METHODS: This study is drawn from the Avon Longitudinal Study of Parents and Children. A total of 7611 term infants were genotyped and patient outcome data retrieved from routine medical records. Exposure measures were the presence of one or more minor alleles in one of 3 SNPs (rs2284411, rs2498804, rs1835740). The primary outcome was the need for resuscitation at birth. RESULTS: For SNP rs1835740, infants homozygous for the minor allele compared to wild type were more likely to need resuscitation (9.2% vs. 7.0%, p = 0.041), while the odds ratio for resuscitation was associated with each increasing minor allele [OR 1.17 (1.01-1.35)]. Population attributable risk fraction was 6.5%. There was no evidence that the other two SNPs investigated were associated with birth condition. CONCLUSION: We have tested three candidate SNPs to measure any association with birth condition. The study revealed that the rs1835740 was associated with the need for resuscitation and Apgar scores, with a substantial population impact.


Assuntos
Asfixia Neonatal/genética , Moléculas de Adesão Celular/genética , Proteínas Proto-Oncogênicas c-akt/genética , Receptores de N-Metil-D-Aspartato/genética , Humanos , Recém-Nascido , Estudos Longitudinais , Proteínas de Membrana , Polimorfismo de Nucleotídeo Único , Proteínas de Ligação a RNA
14.
Neurochem Int ; 97: 83-90, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26972612

RESUMO

Lignans are biologically active phenolic compounds related to lignin, produced in different plants. Arctigenin, a dibenzylbutyrolactone-type lignan, has been used as a neuroprotective agent for the treatment of encephalitis. Previous studies of cultured rat cerebral cortical neurones raised the possibility that arctigenin inhibits kainate-induced excitotoxicity. The aims of the present study were: 1) to analyse the effect of arctigenin on normal synaptic activity in ex vivo brain slices, 2) to determine its receptor binding properties and test the effect of arctigenin on AMPA/kainate receptor activation and 3) to establish its effects on neuronal activity in vivo. Arctigenin inhibited glutamatergic transmission and reduced the evoked field responses. The inhibitory effect of arctigenin on the evoked field responses proved to be substantially dose dependent. Our results indicate that arctigenin exerts its effects under physiological conditions and not only on hyper-excited neurons. Furthermore, arctigenin can cross the blood-brain barrier and in the brain it interacts with kainate sensitive ionotropic glutamate receptors. These results indicate that arctigenin is a potentially useful new pharmacological tool for the inhibition of glutamate-evoked responses in the central nervous system in vivo.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Furanos/farmacologia , Lignanas/farmacologia , Neurônios/fisiologia , Receptores de Glutamato/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Masculino , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Córtex Somatossensorial/efeitos dos fármacos
15.
J Neurochem ; 135(2): 207-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26451974

RESUMO

This Editorial highlights a study by Hunsberger et al. (2015) in the current issue of Journal of Neurochemistry, in which the authors explore the effects of riluzole (R) treatment on tau-P301L transgenic mice. The authors employed a comprehensive analysis of possible restorative effects of the drug by examining glutamate levels in subregions of the hippocampus, expression of tau and its hyper-phosphorylated forms, and memory function using behavioral tests. The authors report a simultaneous reduction in glutamate reuptake and an increase in glutamate release in the tau-P301L model, both of which are ameliorated with riluzole treatment. The authors' findings have implications for our understanding of synaptic transmission mechanisms also associated with Alzheimer's disease pathology.


Assuntos
Transtornos Cognitivos/prevenção & controle , Transtornos Cognitivos/psicologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Fármacos Neuroprotetores/farmacologia , Riluzol/farmacologia , Tauopatias/prevenção & controle , Tauopatias/psicologia , Proteínas tau/biossíntese , Animais , Humanos
16.
Neurotox Res ; 27(4): 441-52, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25576253

RESUMO

Entorhinal cortex is a highly epilepsy-prone brain region. Effects of repetitive seizures on ionotropic glutamate receptors (iGluRs) were investigated in rat entorhinal cortex slices. Seizures were induced by daily administration of 4-aminopyridine (4-AP). Electrophysiological, pharmacological and histological investigations were carried out to determine changes in synaptic efficacy and in sensitivity of iGluRs due to recurring seizures. Repeated 4-AP-induced seizures increased the amplitude of evoked synaptic field responses in rat entorhinal cortical slices. While vulnerability to inhibition of AMPA receptors by the specific antagonist GYKI 52466 was slightly reduced, responsiveness to NMDA receptor antagonist APV remained unaffected. Testing of bivalent cation permeability of iGluRs revealed reduced Ca(2+)-influx through non-NMDA receptors. According to the semi-quantitative histoblot analysis GluA1-4, GluA1, GluA2, GluK5, GluN1 and GluN2A subunit protein expression differently altered. While there was a marked decrease in the level of GluA1-4, GluA2 and GluK5 receptor subunits, GluA1 and GluN2A protein levels moderately increased. The results indicate that brief convulsions, repeated daily for 10 days can increase overall entorhinal cortex excitability despite a reduction in AMPA/kainate receptor activity, probably through the alteration of local network susceptibility.


Assuntos
4-Aminopiridina/toxicidade , Córtex Entorrinal/fisiopatologia , Receptores de AMPA/metabolismo , Receptores de Ácido Caínico/metabolismo , Convulsões/fisiopatologia , 2-Amino-5-fosfonovalerato/farmacologia , Animais , Benzodiazepinas/farmacologia , Córtex Entorrinal/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Caínico/farmacologia , Masculino , Subunidades Proteicas/metabolismo , Ratos , Ratos Wistar , Receptores de AMPA/antagonistas & inibidores , Receptores de Ácido Caínico/agonistas , Convulsões/induzido quimicamente , Convulsões/metabolismo
17.
J Comp Neurol ; 522(18): 4023-42, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25041792

RESUMO

We examined the synaptic structure, quantity, and distribution of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)- and N-methyl-D-aspartate (NMDA)-type glutamate receptors (AMPARs and NMDARs, respectively) in rat cochlear nuclei by a highly sensitive freeze-fracture replica labeling technique. Four excitatory synapses formed by two distinct inputs, auditory nerve (AN) and parallel fibers (PF), on different cell types were analyzed. These excitatory synapse types included AN synapses on bushy cells (AN-BC synapses) and fusiform cells (AN-FC synapses) and PF synapses on FC (PF-FC synapses) and cartwheel cell spines (PF-CwC synapses). Immunogold labeling revealed differences in synaptic structure as well as AMPAR and NMDAR number and/or density in both AN and PF synapses, indicating a target-dependent organization. The immunogold receptor labeling also identified differences in the synaptic organization of FCs based on AN or PF connections, indicating an input-dependent organization in FCs. Among the four excitatory synapse types, the AN-BC synapses were the smallest and had the most densely packed intramembrane particles (IMPs), whereas the PF-CwC synapses were the largest and had sparsely packed IMPs. All four synapse types showed positive correlations between the IMP-cluster area and the AMPAR number, indicating a common intrasynapse-type relationship for glutamatergic synapses. Immunogold particles for AMPARs were distributed over the entire area of individual AN synapses; PF synapses often showed synaptic areas devoid of labeling. The gold-labeling for NMDARs occurred in a mosaic fashion, with less positive correlations between the IMP-cluster area and the NMDAR number. Our observations reveal target- and input-dependent features in the structure, number, and organization of AMPARs and NMDARs in AN and PF synapses.


Assuntos
Núcleo Coclear/citologia , Neurônios/citologia , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Animais , Nervo Coclear/citologia , Nervo Coclear/metabolismo , Núcleo Coclear/metabolismo , Técnica de Fratura por Congelamento , Imuno-Histoquímica , Masculino , Microscopia Eletrônica , Neurônios/metabolismo , Fotomicrografia , Ratos Sprague-Dawley , Sinapses/ultraestrutura
18.
BMC Genet ; 15: 80, 2014 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-24996834

RESUMO

BACKGROUND: Single-strand conformational polymorphism (SSCP) is still a frequently used genotyping method across different fields for the detection of single nucleotide polymorphisms (SNPs) due to its simplicity, requirement for basic equipment accessible in most laboratories and low cost. This technique was previously used to detect rs4354668:A > C (g.-181A > C) SNP in the promoter of astroglial glutamate transporter (EAAT2) and the same approach was initially used here to investigate this promoter region in a cohort of newborns. RESULTS: Unexpectedly, four distinct DNA migration patterns were identified by SSCP. Sanger sequencing revealed two additional SNPs: g.-200C > A and g.-168C > T giving a rise to a total of ten EAAT2 promoter variants. SSCP failed to distinguish these variants reliably and thus pyrosequencing assays were developed. g.-168C > T was found in heterozygous form in one infant only with minor allele frequency (MAF) of 0.0023. In contrast, g.-200C > A and -181A > C were more common (with MAF of 0.46 and 0.49, respectively) and showed string evidence of linkage disequilibrium (LD). In a systematic comparison, 16% of samples were miss-classified by SSCP with 25-31% errors in the identification of the wild-type and homozygote mutant genotypes compared to pyrosequencing or Sanger sequencing. In contrast, SSCP and pyrosequencing of an unrelated single SNP (rs1835740:C > T), showed 94% concordance. CONCLUSION: Our data suggest that SSCP cannot always detect reliably several closely located SNPs. Furthermore, caution is needed in the interpretation of the association studies linking only one of the co-inherited SNPs in the EAAT2 promoter to human diseases.


Assuntos
Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Polimorfismo de Nucleotídeo Único , Polimorfismo Conformacional de Fita Simples , Regiões Promotoras Genéticas , Análise de Sequência de DNA/métodos , Adulto , Transportador 2 de Aminoácido Excitatório , Frequência do Gene , Genótipo , Humanos , Recém-Nascido , Desequilíbrio de Ligação
20.
Proc Natl Acad Sci U S A ; 111(1): E188-93, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24367085

RESUMO

Cerebellar motor learning is suggested to be caused by long-term plasticity of excitatory parallel fiber-Purkinje cell (PF-PC) synapses associated with changes in the number of synaptic AMPA-type glutamate receptors (AMPARs). However, whether the AMPARs decrease or increase in individual PF-PC synapses occurs in physiological motor learning and accounts for memory that lasts over days remains elusive. We combined quantitative SDS-digested freeze-fracture replica labeling for AMPAR and physical dissector electron microscopy with a simple model of cerebellar motor learning, adaptation of horizontal optokinetic response (HOKR) in mouse. After 1-h training of HOKR, short-term adaptation (STA) was accompanied with transient decrease in AMPARs by 28% in target PF-PC synapses. STA was well correlated with AMPAR decrease in individual animals and both STA and AMPAR decrease recovered to basal levels within 24 h. Surprisingly, long-term adaptation (LTA) after five consecutive daily trainings of 1-h HOKR did not alter the number of AMPARs in PF-PC synapses but caused gradual and persistent synapse elimination by 45%, with corresponding PC spine loss by the fifth training day. Furthermore, recovery of LTA after 2 wk was well correlated with increase of PF-PC synapses to the control level. Our findings indicate that the AMPARs decrease in PF-PC synapses and the elimination of these synapses are in vivo engrams in short- and long-term motor learning, respectively, showing a unique type of synaptic plasticity that may contribute to memory consolidation.


Assuntos
Cerebelo/metabolismo , Aprendizagem/fisiologia , Neurônios Motores/fisiologia , Animais , Comportamento Animal , Técnica de Fratura por Congelamento , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Memória , Memória de Curto Prazo/fisiologia , Camundongos , Fibras Nervosas/patologia , Plasticidade Neuronal , Células de Purkinje/citologia , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Sinapses/fisiologia , Transmissão Sináptica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...