Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 104: 105182, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38838470

RESUMO

BACKGROUND: Human milk oligosaccharides (HMOs), their determinants, infant gut microbiota and health are under extensive research; however, seldom jointly addressed. Leveraging data from the HELMi birth cohort, we investigated them collectively, considering maternal and infant secretor status. METHODS: HMO composition in breastmilk collected 3 months postpartum (n = 350 mothers) was profiled using high-performance liquid chromatography. Infant gut microbiota taxonomic and functional development was studied at 3, 6, and 12 months (n = 823 stool samples) via shotgun metagenomic sequencing, focusing on HMO metabolism via glycoside hydrolase (GH) analysis. Maternal and infant secretor statuses were identified through phenotyping and genotyping, respectively. Child health, emphasizing allergies and antibiotics as proxies for infectious diseases, was recorded until 2 years. FINDINGS: Mother's parity, irritable bowel syndrome, gestational diabetes, and season of milk collection associated with HMO composition. Neither maternal nor infant secretor status associated with infant gut microbiota, except for a few taxa linked to individual HMOs. Analysis stratified for birth mode revealed distinct patterns between the infant gut microbiota and HMOs. Child health parameters were not associated to infant or maternal secretor status. INTERPRETATION: This comprehensive exploration unveils intricate links between secretor genotype, maternal factors, HMO composition, infant microbiota, and child health. Understanding these nuanced relationships is paramount for refining strategies to optimize early life nutrition and its enduring impact on long-term health. FUNDING: Sweet Crosstalk EU H2020 MSCA ITN, Academy of Finland, Mary and Georg C. Ehrnrooth Foundation, Päivikki and Sakari Sohlberg Foundation, and Tekes.

2.
Carbohydr Res ; 541: 109149, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38796900

RESUMO

As the evidence supporting the beneficial effects of human milk oligosaccharides (HMOs) grows, so does the commercial interest in their inclusion in infant formula products. This also requires analytical methods capable of their quantification from finished infant formula products as well as from premixed ingredients in some cases. The objective of the present study was the development and single-laboratory validation of a method that can be used for this purpose for seven HMOs: 2'-fucosyllactose (2'FL), 3-fucosyllactose (3FL), difucosyllactose (DFL), 3'-sialyllactose (3'SL), 6'-sialyllactose (6'SL), lacto-N-tetraose (LNT), and lacto-N-neotetraose (LNnT). The present method uses labeling by reductive amination, with 4-aminobenzoic acid ethyl ester (benzocaine) as the labeling reagent and picoline borane as the reducing agent, then applies HPLC separation with UV detection. The seven HMOs could be analyzed from infant formula and premix samples with recoveries between 91 and 108 %, relative standard deviations of 4.3 % or lower across all replicates, and limits of quantitation between 0.001 % and 0.004 % of powder sample by weight. The method was found to be rapid and reliable, with a runtime of only 14 min per injection, in contrast to other methods found in literature which typically use nearly or more than an hour. In addition, it uses instrumentation that's readily available in most analytical laboratories.

3.
Anal Bioanal Chem ; 413(6): 1595-1603, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33558961

RESUMO

Industrial production of human milk oligosaccharides (HMOs) represents a recently growing interest since they serve as key ingredients in baby formulas and are also utilized as dietary supplements for all age groups. Despite their short oligosaccharide chain lengths, HMO analysis is challenging due to extensive positional and linkage variations. Capillary gel electrophoresis primarily separates analyte molecules based on their hydrodynamic volume to charge ratios, thus, offers excellent resolution for most of such otherwise difficult-to-separate isomers. In this work, two commercially available gel compositions were evaluated on the analysis of a mixture of ten synthetic HMOs. The relevant respective separation matrices were then applied to selected analytical in-process control examples. The conventionally used carbohydrate separation matrix was applied for the in-process analysis of bacteria-mediated production of 3-fucosyllactose, lacto-N-tetraose, and lacto-N-neotetraose. The other example showed the suitability of the method for the in vivo in-process control of a shake flask and fermentation approach of 2'-fucosyllactose production. In this latter instance, borate complexation was utilized to efficiently separate the 2'- and 3-fucosylated lactose positional isomers. In all instances, the analysis of the HMOs of interest required only a couple of minutes with high resolution and excellent migration time and peak area reproducibility (average RSD 0.26% and 3.56%, respectively), features representing high importance in food additive manufacturing in-process control.


Assuntos
Suplementos Nutricionais/análise , Eletroforese Capilar/métodos , Aditivos Alimentares/análise , Análise de Alimentos/métodos , Leite Humano/metabolismo , Oligossacarídeos/análise , Ácidos Bóricos/química , Carboidratos/química , Fermentação , Glicosilação , Humanos , Hidrodinâmica , Oligossacarídeos/química , Reprodutibilidade dos Testes
4.
Food Chem ; 341(Pt 2): 128200, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33065525

RESUMO

There is recently growing interest towards synthesized human milk oligosaccharides (HMOs) as baby formula additives, and interestingly also as dietary supplements for adults. Currently quite a few manufacturers synthesize HMOs, however, their analysis is challenging, both in resolution and speed. In this paper an ultrafast high-resolution method is introduced for the separation of HMOs by multicapillary gel electrophoresis. Two gel compositions were evaluated with complementary resolving power. One was a conventionally used industrial standard carbohydrate separation matrix, resolving oligosaccharides according to their charge to hydrodynamic volume ratios. The other one was a borate-buffered dextran gel, which utilized the secondary equilibrium of the borate-vicinal diol complexation to enhance resolution. Considering the rapid analysis time and multiplexing (12-channel system), a 96 well sample plate can be analyzed in less than 80 min with the conventional type carbohydrate separation matrix and in less than one hour with the borate-buffered dextran gel. Exploiting the one fluorophore per molecule labeling stoichiometry, the limit of detection (S/N > 3) and limit of quantitation (S/N > 10) were determined as 0.025 and 0.100 mg/mL, respectively, with good linearity. Based on the calibration plot, the quantities of several low concentration HMOs were determined from a human milk sample.


Assuntos
Eletroforese/métodos , Leite Humano/química , Oligossacarídeos/análise , Boratos/química , Humanos , Limite de Detecção
5.
Glycobiology ; 26(3): 261-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26582607

RESUMO

Human milk oligosaccharides (HMOs) are recognized as benefiting breast-fed infants in multiple ways. As a result, there is growing interest in the synthesis of HMOs mimicking their natural diversity. Most HMOs are fucosylated oligosaccharides. α-l-Fucosidases catalyze the hydrolysis of α-l-fucose from the non-reducing end of a glucan. They fall into the glycoside hydrolase GH29 and GH95 families. The GH29 family fucosidases display a classic retaining mechanism and are good candidates for transfucosidase activity. We recently demonstrated that the α-l-fucosidase from Thermotoga maritima (TmαFuc) from the GH29 family can be evolved into an efficient transfucosidase by directed evolution ( Osanjo et al. 2007). In this work, we developed semi-rational approaches to design an α-l-transfucosidase starting with the α-l-fucosidase from commensal bacteria Bifidobacterium longum subsp. infantis (BiAfcB, Blon_2336). Efficient fucosylation was obtained with enzyme mutants (L321P-BiAfcB and F34I/L321P-BiAfcB) enabling in vitro synthesis of lactodifucotetraose, lacto-N-fucopentaose II, lacto-N-fucopentaose III and lacto-N-difucohexaose I. The enzymes also generated more complex HMOs like fucosylated para-lacto-N-neohexaose (F-p-LNnH) and mono- or difucosylated lacto-N-neohexaose (F-LNnH-I, F-LNnH-II and DF-LNnH). It is worth noting that mutation at these two positions did not result in a strong decrease in the overall activity of the enzyme, which makes these variants interesting candidates for large-scale transfucosylation reactions. For the first time, this work provides an efficient enzymatic method to synthesize the majority of fucosylated HMOs.


Assuntos
Leite Humano/química , Oligossacarídeos/química , alfa-L-Fucosidase/química , Amino Açúcares/química , Bifidobacterium/enzimologia , Fucose/química , Glicosilação , Humanos , Lactente , Mutação/genética , Oligossacarídeos/síntese química , Polissacarídeos/química , Especificidade por Substrato , alfa-L-Fucosidase/genética
6.
Carbohydr Res ; 339(8): 1561-4, 2004 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15178402

RESUMO

Bis(tetra-O-acetyl-beta-D-glucopyranosyl)disulfide reacts, under silver ion activation, with primary and secondary aliphatic as well as aromatic amines to furnish the title compounds in moderate to good yields. The same derivatives could also be obtained from (tetra-O-acetyl)-beta-D-glucopyranosyl methanethiolsulfonate 1 by nucleophilic substitution with amines. It was shown that the polarization of the S-S-bond in 1 is enhanced by Ag+ so as to allow reaction with sterically hindered amines as well.


Assuntos
Glicosídeos/química , Sulfamerazina/química , Sulfamerazina/síntese química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...