Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 96(4-1): 043204, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29347501

RESUMO

Oscillation of particles in a dust crystal formed in a low-pressure radio-frequency gas discharge under microgravity conditions is studied. Analysis of experimental data obtained in our previous study shows that the oscillations are highly isotropic and nearly homogeneous in the bulk of a dust crystal; oscillations of the neighboring particles are significantly correlated. We demonstrate that the standard deviation of the particle radius vector along with the local particle number density fully define the coupling parameter of the particle subsystem. The latter proves to be of the order of 100, which is two orders of magnitude lower than the coupling parameter estimated for the Brownian diffusion of particles with the gas temperature. This means significant kinetic overheating of particles under stationary conditions. A theoretical interpretation of the large amplitude of oscillation implies the increase of particle charge fluctuations in the dust crystal. The theoretical estimates are based on the ionization equation of state for the complex plasma and the equation for the plasma perturbation evolution. They are shown to match the results of experimental data processing. Estimated order of magnitude of the coupling parameter accounts for the existence of the solid-liquid phase transition observed for similar systems in experiments.

2.
Phys Rev E ; 94(3-1): 033204, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27739834

RESUMO

We propose a method of determination of the dust particle spatial distribution in dust clouds that form in three-dimensional (3D) complex plasmas under microgravity conditions. The method utilizes the data obtained during the 3D scanning of a cloud, and it provides reasonably good accuracy. Based on this method, we investigate the particle density in a dust cloud realized in gas discharge plasma in the PK-3 Plus setup onboard the International Space Station. We find that the treated dust clouds are both anisotropic and inhomogeneous. One can isolate two regimes in which a stationary dust cloud can be observed. At low pressures, the particle density decreases monotonically with the increase of the distance from the discharge center; at higher pressures, the density distribution has a shallow minimum. Regardless of the regime, we detect a cusp of the distribution at the void boundary and a slowly varying density at larger distances (in the foot region). A theoretical interpretation of the obtained results is developed that leads to reasonable estimates of the densities for both the cusp and the foot. The modified ionization equation of state, which allows for violation of the local quasineutrality in the cusp region, predicts the spatial distributions of ion and electron densities to be measured in future experiments.

3.
Rev Sci Instrum ; 87(9): 093505, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27782568

RESUMO

New complex-plasma facility, Plasmakristall-4 (PK-4), has been recently commissioned on board the International Space Station. In complex plasmas, the subsystem of µm-sized microparticles immersed in low-pressure weakly ionized gas-discharge plasmas becomes strongly coupled due to the high (103-104 e) electric charge on the microparticle surface. The microparticle subsystem of complex plasmas is available for the observation at the kinetic level, which makes complex plasmas appropriate for particle-resolved modeling of classical condensed matter phenomena. The main purpose of PK-4 is the investigation of flowing complex plasmas. To generate plasma, PK-4 makes use of a classical dc discharge in a glass tube, whose polarity can be switched with the frequency of the order of 100 Hz. This frequency is high enough not to be felt by the relatively heavy microparticles. The duty cycle of the polarity switching can be also varied allowing to vary the drift velocity of the microparticles and (when necessary) to trap them. The facility is equipped with two videocameras and illumination laser for the microparticle imaging, kaleidoscopic plasma glow observation system and minispectrometer for plasma diagnostics and various microparticle manipulation devices (e.g., powerful manipulation laser). Scientific experiments are programmed in the form of scripts written with the help of specially developed C scripting language libraries. PK-4 is mainly operated from the ground (control center CADMOS in Toulouse, France) with the support of the space station crew. Data recorded during the experiments are later on delivered to the ground on the removable hard disk drives and distributed to participating scientists for the detailed analysis.

4.
Opt Express ; 24(8): 7987-8012, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27137240

RESUMO

Template matching algorithms represent a viable tool to locate particles in optical images. A crucial factor of the performance of these methods is the choice of the similarity measure. Recently, it was shown in [Gao and Helgeson, Opt. Express 22 (2014)] that the correlation coefficient (CC) leads to good results. Here, we introduce the mutual information (MI) as a nonlinear similarity measure and compare the performance of the MI and the CC for different noise scenarios. It turns out that the mutual information leads to superior results in the case of signal dependent noise. We propose a novel approach to estimate the velocity of particles which is applicable in imaging scenarios where the particles appear elongated due to their movement. By designing a bank of anisotropic templates supposed to fit the elongation of the particles we are able to reliably estimate their velocity and direction of motion out of a single image.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(6 Pt 2): 066407, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23005228

RESUMO

Phase behavior of large three-dimensional (3D) complex plasma systems under microgravity conditions onboard the International Space Station is investigated. The neutral gas pressure is used as a control parameter to trigger phase changes. Detailed analysis of structural properties and evaluation of three different melting-freezing indicators reveal that complex plasmas can exhibit melting by increasing the gas pressure. Theoretical estimates of complex plasma parameters allow us to identify main factors responsible for the observed behavior. The location of phase states of the investigated systems on a relevant equilibrium phase diagram is estimated. Important differences between the melting process of 3D complex plasmas under microgravity conditions and that of flat 2D complex plasma crystals in ground based experiments are discussed.


Assuntos
Modelos Químicos , Gases em Plasma/química , Reologia/métodos , Ausência de Peso , Simulação por Computador , Transição de Fase
6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(1 Pt 2): 016401, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23005544

RESUMO

Subsonic motion of a large particle moving through the bulk of a dust crystal formed by negatively charged small particles is investigated using the PK-3 Plus laboratory onboard the International Space Station. Tracing the particle trajectories shows that the large particle moves almost freely through the bulk of the plasma crystal, while dust particles move along characteristic α-shaped pathways near the large particle. In the hydrodynamic approximation, we develop a theory of nonviscous dust particle motion about a large particle and calculate particle trajectories. Good agreement with experiment validates our approach.


Assuntos
Poeira , Modelos Teóricos , Ausência de Peso , Simulação por Computador , Cristalização , Hidrodinâmica , Movimento (Física) , Eletricidade Estática , Viscosidade
7.
Phys Rev Lett ; 106(20): 205001, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21668236

RESUMO

Freezing and melting of large three-dimensional complex plasmas under microgravity conditions is investigated. The neutral gas pressure is used as a control parameter to trigger the phase changes: Complex plasma freezes (melts) by decreasing (increasing) the pressure. The evolution of complex plasma structural properties upon pressure variation is studied. Theoretical estimates allow us to identify the main factors responsible for the observed behavior.

8.
Phys Rev Lett ; 105(4): 045001, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20867851

RESUMO

Using experiments and combining theory and computer simulations, we show that binary complex plasmas are particularly good model systems to study the kinetics of fluid-fluid demixing at the "atomistic" (individual particle) level. The essential parameters of interparticle interactions in complex plasmas, such as the interaction range(s) and degree of nonadditivity, can be varied significantly, which allows systematic investigations of different demixing regimes. The critical role of competition between long-range and short-range interactions at the initial stage of the spinodal decomposition is discussed.

9.
Phys Rev Lett ; 102(8): 085003, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19257747

RESUMO

The dynamical onset of lane formation is studied in experiments with binary complex plasmas under microgravity conditions. Small microparticles are driven and penetrate into a cloud of big particles, revealing a strong tendency towards lane formation. The observed time-resolved lane-formation process is in good agreement with computer simulations of a binary Yukawa model with Langevin dynamics. The laning is quantified in terms of the anisotropic scaling index, leading to a universal order parameter for driven systems.

10.
Phys Rev Lett ; 100(9): 095003, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18352717

RESUMO

We report the experimental discovery of "electrorheological (ER) complex plasmas," where the control of the interparticle interaction by an externally applied electric field is due to distortion of the Debye spheres that surround microparticles (dust) in a plasma. We show that interactions in ER plasmas under weak ac fields are mathematically equivalent to those in conventional ER fluids. Microgravity experiments, as well as molecular dynamics simulations, show a phase transition from an isotropic to an anisotropic (string) plasma state as the electric field is increased.

11.
Phys Rev Lett ; 98(26): 265006, 2007 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-17678099

RESUMO

We describe the first observation of a void closure in complex plasma experiments under microgravity conditions performed with the Plasma-Kristall (PKE-Nefedov) facility on board the International Space Station. The void--a grain-free region in the central part of the discharge where the complex plasma is generated--has been formed under most of the plasma conditions and thought to be an inevitable effect. However, we demonstrate in this Letter that an appropriate tune of the discharge parameters allows the void to close. This experimental achievement along with its theoretical interpretation opens new perspectives in engineering new experiments with large quasi-isotropic void-free complex plasma clouds in microgravity conditions.

12.
Phys Rev Lett ; 96(1): 015001, 2006 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-16486466

RESUMO

The occurrence of liquid-vapor phase transition and the possible existence of a critical point in complex plasmas--systems that consist of charged micrograins in a neutralizing plasma background--is investigated theoretically. An analysis based on the consideration of the intergrain interaction potential suggests that under certain conditions systems near and at the critical point should be observable. Measurements under microgravity conditions would appear to be required. The analysis aims at determining the plasma parameter regime most suitable for planned experimental investigations.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(5 Pt 2): 056401, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-16089654

RESUMO

Observations of complex plasmas under microgravity conditions onboard the International Space Station performed with the Plasma-Kristall experiment-Nefedov facility are reported. A weak instability of the boundary between the central void (region free of microparticles) and the microparticle cloud is observed at low gas pressures. The instability leads to periodic injections of a relatively small number of particles into the void region (by analogy this effect is called the "trampoline effect"). The trajectories of injected particles are analyzed providing information on the force field inside the void. The experimental results are compared with theory which assumes that the most important forces inside the void are the electric and the ion drag forces. Good agreement is found clearly indicating that under conditions investigated the void formation is caused by the ion drag force.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(3 Pt 2B): 036413, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15903594

RESUMO

A jump of dust density propagating through the dusty plasma structure has been observed. To excite the disturbance an impulse of axial magnetic field to the dusty plasma in a dc glow discharge striation has been applied. This impulse resulted in the dynamical stretching of the dusty plasma structure. During the reconstruction of the structure a ramp-shaped perturbation of dust density appeared. The perturbation was steepening and formed into a dust-acoustic shock. The anomalously high shock compression is observed.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(6 Pt 2): 066401, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15244739

RESUMO

A linear dispersion relation in a highly collisional complex plasma, including ion drift, was derived in the light of recent PKE-Nefedov wave experiment performed under microgravity conditions onboard the International Space Station. Two modifications of dust density waves with wave frequencies larger than the dust-neutral collision frequency were obtained. The relevance to the space observations was analyzed and a comparison of theory and observations was made for two different complex plasma domains formed by small and large microparticles. Good qualitative agreement is found between the measurements and the theoretical dispersion relations. This allows a determination of the basic complex plasma parameters.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(1 Pt 2): 016402, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14995720

RESUMO

A large-amplitude wave with two humps of dust density, separated by a dip was generated. To excite the wave in the dc glow discharge dusty plasma a gas-dynamic impact was used. The structure obtained had several interesting properties such as strong compression of dust in the humps, supersonic dust particles in the rarefaction zone, reconstruction of the initial dust configuration after the passing of the wave. The peculiarities of the phenomenon observed are discussed. The mechanism of generation and propagation for such kind of perturbation is proposed.

17.
Phys Rev Lett ; 90(24): 245005, 2003 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-12857198

RESUMO

Measurements of effective structural (pair correlation function) and transport (diffusion constant) characteristics of the system of microparticles in dc and rf gas-discharge plasmas under microgravity conditions are reported. The comparison between these measurements and numerical simulations is used for complex plasma diagnostics.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(3 Pt 2): 036404, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12689168

RESUMO

"Complex plasmas" consist of electrons, ions, and charged microparticles. The latter are individually observable, allowing kinetic measurements in plasmas. Using a sudden gas pulse, a traveling perturbation was initiated in such a complex plasma and its propagation, acceleration, and steepening-possibly into a shock was followed. The experiment was performed in the PKE-Nefedov laboratory under microgravity conditions on the international space station, i.e., in a complex plasma cloud with very little stored (potential or free) energy and thus free of, e.g., parametric instabilities. The perturbation front remained remarkably smooth, with a microroughness of the order of the interparticle distance. The observations are presented and interpreted.

19.
Phys Rev Lett ; 90(5): 055003, 2003 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-12633365

RESUMO

The first experiment on the decharging of a complex plasma in microgravity conditions was conducted. After switching off the rf power, in the afterglow plasma, ions and electrons rapidly recombine and leave a cloud of charged microparticles. Because of microgravity, the particles remain suspended in the experimental chamber for a sufficiently long time, allowing precise measurements of the rest particle charge. A simple theoretical model for the decharging is proposed which agrees quite well with the experiment results and predicts the rest charge at lower gas pressures.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(5 Pt 2): 056411, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12513611

RESUMO

This study deals with the boundary between a normal plasma of ions and electrons, and an adjacent complex plasma of ions, electrons, and microparticles, as found in innumerable examples in nature. Here we show that the matching between the two plasmas involve electrostatic double layers. These double layers explain the sharp boundaries observed in the laboratory and in astrophysics. A modified theory is derived for the double layers that form at the discontinuity between two different complex plasmas and at the point of contact of three complex plasmas. The theory is applied to the first measurements from the Plasma Kristall Experiment (PKE) Nefedov Laboratory in the International Space Station.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...