Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS One ; 19(1): e0296253, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38180971

RESUMO

BACKGROUND: Checkpoint inhibitors have drastically improved the therapy of patients with advanced melanoma. 18F-FDG-PET/CT parameters might act as biomarkers for response and survival and thus can identify patients that do not benefit from immunotherapy. However, little literature exists on the association of baseline 18F-FDG-PET/CT parameters with progression free survival (PFS), best overall response (BOR), and overall survival (OS). MATERIALS AND METHODS: Using a whole tumor volume segmentation approach, we investigated in a retrospective registry study (n = 50) whether pre-treatment 18F-FDG-PET/CT parameters of three subgroups (tumor burden, tumor glucose uptake and non-tumoral hematopoietic tissue metabolism), can act as biomarkers for the primary endpoints PFS and BOR as well as for the secondary endpoint OS. RESULTS: Compared to the sole use of clinical parameters, baseline 18F-FDG-PET/CT parameters did not significantly improve a Cox proportional-hazard model for PFS (C-index/AIC: 0.70/225.17 and 0.68/223.54, respectively; p = 0.14). A binomial logistic regression analysis for BOR was not statistically significant (χ2(15) = 16.44, p = 0.35), with a low amount of explained variance (Nagelkerke's R2 = 0.38). Mean FDG uptake of the spleen contributed significantly to a Cox proportional-hazard model for OS (HR 3.55, p = 0.04). CONCLUSIONS: The present study could not confirm the capability of the pre-treatment 18F-FDG-PET/CT parameters tumor burden, tumor glucose uptake and non-tumoral hematopoietic tissue metabolism to act as biomarkers for PFS and BOR in metastatic melanoma patients receiving first-line immunotherapy. The documented potential of 18F-FDG uptake by immune-mediating tissues such as the spleen to act as a biomarker for OS has been reproduced.


Assuntos
Melanoma , Segunda Neoplasia Primária , Humanos , Melanoma/diagnóstico por imagem , Melanoma/tratamento farmacológico , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Intervalo Livre de Progressão , Estudos Retrospectivos , Imunoterapia , Biomarcadores , Glucose
2.
Diagnostics (Basel) ; 13(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37892030

RESUMO

BACKGROUND: The aim of this study was to investigate whether the combination of radiomics and clinical parameters in a machine-learning model offers additive information compared with the use of only clinical parameters in predicting the best response, progression-free survival after six months, as well as overall survival after six and twelve months in patients with stage IV malignant melanoma undergoing first-line targeted therapy. METHODS: A baseline machine-learning model using clinical variables (demographic parameters and tumor markers) was compared with an extended model using clinical variables and radiomic features of the whole tumor burden, utilizing repeated five-fold cross-validation. Baseline CTs of 91 stage IV malignant melanoma patients, all treated in the same university hospital, were identified in the Central Malignant Melanoma Registry and all metastases were volumetrically segmented (n = 4727). RESULTS: Compared with the baseline model, the extended radiomics model did not add significantly more information to the best-response prediction (AUC [95% CI] 0.548 (0.188, 0.808) vs. 0.487 (0.139, 0.743)), the prediction of PFS after six months (AUC [95% CI] 0.699 (0.436, 0.958) vs. 0.604 (0.373, 0.867)), or the overall survival prediction after six and twelve months (AUC [95% CI] 0.685 (0.188, 0.967) vs. 0.766 (0.433, 1.000) and AUC [95% CI] 0.554 (0.163, 0.781) vs. 0.616 (0.271, 1.000), respectively). CONCLUSIONS: The results showed no additional value of baseline whole-body CT radiomics for best-response prediction, progression-free survival prediction for six months, or six-month and twelve-month overall survival prediction for stage IV melanoma patients receiving first-line targeted therapy. These results need to be validated in a larger cohort.

3.
Cancers (Basel) ; 14(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35740659

RESUMO

BACKGROUND: This study investigated whether a machine-learning-based combination of radiomics and clinical parameters was superior to the use of clinical parameters alone in predicting therapy response after three months, and overall survival after six and twelve months, in stage-IV malignant melanoma patients undergoing immunotherapy with PD-1 checkpoint inhibitors and CTLA-4 checkpoint inhibitors. METHODS: A random forest model using clinical parameters (demographic variables and tumor markers = baseline model) was compared to a random forest model using clinical parameters and radiomics (extended model) via repeated 5-fold cross-validation. For this purpose, the baseline computed tomographies of 262 stage-IV malignant melanoma patients treated at a tertiary referral center were identified in the Central Malignant Melanoma Registry, and all visible metastases were three-dimensionally segmented (n = 6404). RESULTS: The extended model was not significantly superior compared to the baseline model for survival prediction after six and twelve months (AUC (95% CI): 0.664 (0.598, 0.729) vs. 0.620 (0.545, 0.692) and AUC (95% CI): 0.600 (0.526, 0.667) vs. 0.588 (0.481, 0.629), respectively). The extended model was not significantly superior compared to the baseline model for response prediction after three months (AUC (95% CI): 0.641 (0.581, 0.700) vs. 0.656 (0.587, 0.719)). CONCLUSIONS: The study indicated a potential, but non-significant, added value of radiomics for six-month and twelve-month survival prediction of stage-IV melanoma patients undergoing immunotherapy.

4.
Cancers (Basel) ; 14(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35158980

RESUMO

The spleen is often involved in malignant lymphoma, which manifests on CT as either splenomegaly or focal, hypodense lymphoma lesions. This study aimed to investigate the diagnostic value of radiomics features of the spleen in classifying malignant lymphoma against non-lymphoma as well as the determination of malignant lymphoma subtypes in the case of disease presence-in particular Hodgkin lymphoma (HL), diffuse large B-cell lymphoma (DLBCL), mantle-cell lymphoma (MCL), and follicular lymphoma (FL). Spleen segmentations of 326 patients (139 female, median age 54.1 +/- 18.7 years) were generated and 1317 radiomics features per patient were extracted. For subtype classification, we created four different binary differentiation tasks and addressed them with a Random Forest classifier using 10-fold cross-validation. To detect the most relevant features, permutation importance was analyzed. Classifier results using all features were: malignant lymphoma vs. non-lymphoma AUC = 0.86 (p < 0.01); HL vs. NHL AUC = 0.75 (p < 0.01); DLBCL vs. other NHL AUC = 0.65 (p < 0.01); MCL vs. FL AUC = 0.67 (p < 0.01). Classifying malignant lymphoma vs. non-lymphoma was also possible using only shape features AUC = 0.77 (p < 0.01), with the most important feature being sphericity. Based on only shape features, a significant AUC could be achieved for all tasks, however, best results were achieved combining shape and textural features. This study demonstrates the value of splenic imaging and radiomic analysis in the diagnostic process in malignant lymphoma detection and subtype classification.

5.
Cancers (Basel) ; 13(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830885

RESUMO

Finding prognostic biomarkers with high accuracy in patients with pancreatic cancer (PC) remains a challenging problem. To improve the prediction of survival and to investigate the relevance of quantitative imaging biomarkers (QIB) we combined QIB with established clinical parameters. In this retrospective study a total of 75 patients with metastatic PC and liver metastases were analyzed. Segmentations of whole liver tumor burden (WLTB) from baseline contrast-enhanced CT images were used to derive QIBs. The benefits of QIBs in multivariable Cox models were analyzed in comparison with two clinical prognostic models from the literature. To discriminate survival, the two clinical models had concordance indices of 0.61 and 0.62 in a statistical setting. Combined clinical and imaging-based models achieved concordance indices of 0.74 and 0.70 with WLTB volume, tumor burden score (TBS), and bilobar disease being the three WLTB parameters that were kept by backward elimination. These combined clinical and imaging-based models have significantly higher predictive performance in discriminating survival than the underlying clinical models alone (p < 0.003). Radiomics and geometric WLTB analysis of patients with metastatic PC with liver metastases enhances the modeling of survival compared with models based on clinical parameters alone.

6.
Int J Comput Assist Radiol Surg ; 16(3): 457-466, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33646521

RESUMO

PURPOSE: We aimed to develop a predictive model of disease severity for cirrhosis using MRI-derived radiomic features of the liver and spleen and compared it to the existing disease severity metrics of MELD score and clinical decompensation. The MELD score is compiled solely by blood parameters, and so far, it was not investigated if extracted image-based features have the potential to reflect severity to potentially complement the calculated score. METHODS: This was a retrospective study of eligible patients with cirrhosis ([Formula: see text]) who underwent a contrast-enhanced MR screening protocol for hepatocellular carcinoma (HCC) screening at a tertiary academic center from 2015 to 2018. Radiomic feature analyses were used to train four prediction models for assessing the patient's condition at time of scan: MELD score, MELD score [Formula: see text] 9 (median score of the cohort), MELD score [Formula: see text] 15 (the inflection between the risk and benefit of transplant), and clinical decompensation. Liver and spleen segmentations were used for feature extraction, followed by cross-validated random forest classification. RESULTS: Radiomic features of the liver and spleen were most predictive of clinical decompensation (AUC 0.84), which the MELD score could predict with an AUC of 0.78. Using liver or spleen features alone had slightly lower discrimination ability (AUC of 0.82 for liver and AUC of 0.78 for spleen features only), although this was not statistically significant on our cohort. When radiomic prediction models were trained to predict continuous MELD scores, there was poor correlation. When stratifying risk by splitting our cohort at the median MELD 9 or at MELD 15, our models achieved AUCs of 0.78 or 0.66, respectively. CONCLUSIONS: We demonstrated that MRI-based radiomic features of the liver and spleen have the potential to predict the severity of liver cirrhosis, using decompensation or MELD status as imperfect surrogate measures for disease severity.


Assuntos
Carcinoma Hepatocelular/diagnóstico por imagem , Doença Hepática Terminal/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Baço/diagnóstico por imagem , Adulto , Idoso , Algoritmos , Área Sob a Curva , Feminino , Humanos , Cirrose Hepática/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Índice de Gravidade de Doença
7.
Acad Radiol ; 22(11): 1393-408, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26376841

RESUMO

RATIONALE AND OBJECTIVES: Tumor volume change has potential as a biomarker for diagnosis, therapy planning, and treatment response. Precision was evaluated and compared among semiautomated lung tumor volume measurement algorithms from clinical thoracic computed tomography data sets. The results inform approaches and testing requirements for establishing conformance with the Quantitative Imaging Biomarker Alliance (QIBA) Computed Tomography Volumetry Profile. MATERIALS AND METHODS: Industry and academic groups participated in a challenge study. Intra-algorithm repeatability and inter-algorithm reproducibility were estimated. Relative magnitudes of various sources of variability were estimated using a linear mixed effects model. Segmentation boundaries were compared to provide a basis on which to optimize algorithm performance for developers. RESULTS: Intra-algorithm repeatability ranged from 13% (best performing) to 100% (least performing), with most algorithms demonstrating improved repeatability as the tumor size increased. Inter-algorithm reproducibility was determined in three partitions and was found to be 58% for the four best performing groups, 70% for the set of groups meeting repeatability requirements, and 84% when all groups but the least performer were included. The best performing partition performed markedly better on tumors with equivalent diameters greater than 40 mm. Larger tumors benefitted by human editing but smaller tumors did not. One-fifth to one-half of the total variability came from sources independent of the algorithms. Segmentation boundaries differed substantially, not ony in overall volume but also in detail. CONCLUSIONS: Nine of the 12 participating algorithms pass precision requirements similar to what is indicated in the QIBA Profile, with the caveat that the present study was not designed to explicitly evaluate algorithm profile conformance. Change in tumor volume can be measured with confidence to within ±14% using any of these nine algorithms on tumor sizes greater than 10 mm. No partition of the algorithms was able to meet the QIBA requirements for interchangeability down to 10 mm, although the partition comprising best performing algorithms did meet this requirement for a tumor size of greater than approximately 40 mm.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Tomografia Computadorizada por Raios X , Carga Tumoral , Algoritmos , Feminino , Humanos , Modelos Lineares , Pulmão/diagnóstico por imagem , Pulmão/patologia , Reprodutibilidade dos Testes
8.
IEEE Trans Med Imaging ; 33(2): 462-80, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24184707

RESUMO

In oncological chemotherapy monitoring, the change of a tumor's size is an important criterion for assessing cancer therapeutics. Measuring the volume of a tumor requires its delineation in 3-D. This is called segmentation, which is an intensively studied problem in medical image processing. However, simply counting the voxels within a binary segmentation result can lead to significant differences in the volume, if the lesion has been segmented slightly differently by various segmentation procedures or in different scans, for example due to the limited spatial resolution of computed tomography (CT) or partial volume effects. This variability limits the sensitivity of size measurements and thus of therapy response assessments and it can even lead to misclassifications. We present a fast, generic algorithm for measuring the volume of solid, compact tumors in CT that considers partial volume effects at the border of a given segmentation result. The algorithm is an extension of the segmentation-based partial volume analysis proposed by Kuhnigk for the volumetry of solid lung lesions , such that it can be applied to inhomogeneous lesions and lesions with inhomogeneous surroundings. Our generalized segmentation-based partial volume correction is based on a spatial subdivision of the segmentation result, from which the fraction of tumor for each voxel is computed. It has been evaluated on phantom data, 1516 lesion segmentation pairs (lung nodules, liver metastases and lymph nodes) as well as 1851 lung nodules from the LIDC-IDRI database. The evaluations of our algorithm show a more accurate estimation of the real volume and its ability to reduce inter- and intra-observer variability significantly for each entity. Overall, the variability (interquartile range) for phantom data is reduced by 49% ( p ≪ 0.001) and the variability between different readers is reduced by 28% ( p ≪ 0.001). The average computation time is 0.2 s.


Assuntos
Imageamento Tridimensional/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/patologia , Imagens de Fantasmas
9.
J Med Imaging (Bellingham) ; 1(3): 034005, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26158063

RESUMO

Efficient segmentation editing tools are important components in the segmentation process, as no automatic methods exist that always generate sufficient results. Evaluating segmentation editing algorithms is challenging, because their quality depends on the user's subjective impression. So far, no established methods for an objective, comprehensive evaluation of such tools exist and, particularly, intermediate segmentation results are not taken into account. We discuss the evaluation of editing algorithms in the context of tumor segmentation in computed tomography. We propose a rating scheme to qualitatively measure the accuracy and efficiency of editing tools in user studies. In order to objectively summarize the overall quality, we propose two scores based on the subjective rating and the quantified segmentation quality over time. Finally, a simulation-based evaluation approach is discussed, which allows a more reproducible evaluation without the need for human input. This automated evaluation complements user studies, allowing a more convincing evaluation, particularly during development, where frequent user studies are not possible. The proposed methods have been used to evaluate two dedicated editing algorithms on 131 representative tumor segmentations. We show how the comparison of editing algorithms benefits from the proposed methods. Our results also show the correlation of the suggested quality score with the qualitative ratings.

10.
Med Phys ; 40(9): 091912, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24007163

RESUMO

PURPOSE: Computed tomography (CT) imaging is the modality of choice for lung cancer diagnostics. With the increasing number of lung interventions on sublobar level in recent years, determining and visualizing pulmonary segments in CT images and, in oncological cases, reliable segment-related information about the location of tumors has become increasingly desirable. Computer-assisted identification of lung segments in CT images is subject of this work. METHODS: The authors present a new interactive approach for the segmentation of lung segments that uses the Euclidean distance of each point in the lung to the segmental branches of the pulmonary artery. The aim is to analyze the potential of the method. Detailed manual pulmonary artery segmentations are used to achieve the best possible segment approximation results. A detailed description of the method and its evaluation on 11 CT scans from clinical routine are given. RESULTS: An accuracy of 2-3 mm is measured for the segment boundaries computed by the pulmonary artery-based method. On average, maximum deviations of 8 mm are observed. 135 intersegmental pulmonary veins detected in the 11 test CT scans serve as reference data. Furthermore, a comparison of the presented pulmonary artery-based approach to a similar approach that uses the Euclidean distance to the segmental branches of the bronchial tree is presented. It shows a significantly higher accuracy for the pulmonary artery-based approach in lung regions at least 30 mm distal to the lung hilum. CONCLUSIONS: A pulmonary artery-based determination of lung segments in CT images is promising. In the tests, the pulmonary artery-based determination has been shown to be superior to the bronchial tree-based determination. The suitability of the segment approximation method for application in the planning of segment resections in clinical practice has already been verified in experimental cases. However, automation of the method accompanied by an evaluation on a larger number of test cases is required before application in the daily clinical routine.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Pulmão/irrigação sanguínea , Pulmão/diagnóstico por imagem , Artéria Pulmonar/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...