Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 106: 129731, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621594

RESUMO

The inhibition of kynurenine production is considered a promising target for cancer immunotherapy. In this study, an amino acid derivative, compound 1 was discovered using a cell-based assay with our screening library. Compound 1 suppressed kynurenine production without inhibiting indoleamine 2,3-dioxygenase 1 (IDO1) activity. The activity of 1 was derived from the inhibition of IDO1 by a metabolite of 1, O-benzylhydroxylamine (OBHA, 2a). A series of N-substituted 2a derivatives that exhibit potent activity in cell-based assays may represent effective prodrugs. Therefore, we synthesized and evaluated novel N,O-substituted hydroxylamine derivatives. The structure-activity relationships revealed that N,O-substituted hydroxylamine 2c inhibits kynurenine production in a cell-based assay. We conducted an in vivo experiment with 2c, although the effectiveness of O-substituted hydroxylamine derivatives in vivo has not been previously reported. The results indicate that N,O-substituted hydroxylamine derivatives are promising IDO1 inhibitors.


Assuntos
Hidroxilamina , Indolamina-Pirrol 2,3,-Dioxigenase , Cinurenina , Cinurenina/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Relação Estrutura-Atividade , Humanos , Hidroxilamina/química , Hidroxilamina/farmacologia , Hidroxilaminas/química , Hidroxilaminas/farmacologia , Estrutura Molecular , Animais , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Camundongos , Relação Dose-Resposta a Droga
2.
Oncol Res ; 31(6): 845-853, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744273

RESUMO

The androgen receptor (AR) is a critical target in all the clinical stages of prostate cancer. To identify a new AR inhibitor, we constructed a new screening system using the androgen-dependent growth of prostate cancer cell lines as a screening indicator. We screened 50,000 culture broths of microorganisms using this screening system and found that the fermentation broth produced by a fungus inhibited androgen-dependent growth of human prostate cancer LNCaP cells without cytotoxicity. Purification of this culture medium was performed, and this resulted in deoxynortryptoquivaline (DNT) being identified as a novel inhibitor of AR function. DNT showed potent inhibition of androgen-dependent growth of human prostate cancer LNCaP cells. The AR competitor assay was performed, and DNT did not act as an AR antagonist. However, DNT inhibited AR-dependent transcriptional activity and AR nuclear translocation, it suggested that the suppression of AR function leads to inhibition activity against androgen-dependent growth.


Assuntos
Androgênios , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Linhagem Celular
3.
Nat Commun ; 13(1): 4063, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831322

RESUMO

Point-mutations of MEK1, a central component of ERK signaling, are present in cancer and RASopathies, but their precise biological effects remain obscure. Here, we report a mutant MEK1 structure that uncovers the mechanisms underlying abnormal activities of cancer- and RASopathy-associated MEK1 mutants. These two classes of MEK1 mutations differentially impact on spatiotemporal dynamics of ERK signaling, cellular transcriptional programs, gene expression profiles, and consequent biological outcomes. By making use of such distinct characteristics of the MEK1 mutants, we identified cancer- and RASopathy-signature genes that may serve as diagnostic markers or therapeutic targets for these diseases. In particular, two AKT-inhibitor molecules, PHLDA1 and 2, are simultaneously upregulated by oncogenic ERK signaling, and mediate cancer-specific ERK-AKT crosstalk. The combined expression of PHLDA1/2 is critical to confer resistance to ERK pathway-targeted therapeutics on cancer cells. Finally, we propose a therapeutic strategy to overcome this drug resistance. Our data provide vital insights into the etiology, diagnosis, and therapeutic strategy of cancers and RASopathies.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-akt , Humanos , MAP Quinase Quinase 1/genética , Sistema de Sinalização das MAP Quinases/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética
4.
Yakugaku Zasshi ; 142(2): 145-153, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-35110451

RESUMO

The first medicine containing the boron element, bortezomib, was approved for clinical use just 18 years ago. The boronic acid substructure in bortezomib serves as an electrophilic functionality with high affinity for hydroxy groups, which are frequently found in catalytic sites of proteolytic enzymes, to create reversible covalent bonds with a slow dissociation rate. Today, boronic acid is considered an important molecule in the medicinal chemistry toolbox, which was promoted by the success of bortezomib and pioneering approaches to use boronic acid in the molecular design of serine protease inhibitors in the 1980s. In this review article, we first provide an overview of the development of bortezomib, and then summarize our achievements to construct boronic acid analogs of tyropeptin A, a naturally occurring proteasome inhibitor, with potent in vivo efficacy. Representative stereoselective synthetic methods of α-aminoboronic acid are also showcased.


Assuntos
Antineoplásicos/síntese química , Ácidos Borônicos/química , Bortezomib/síntese química , Desenvolvimento de Medicamentos/métodos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Inibidores de Serina Proteinase/síntese química , Bortezomib/química , Catálise , Dipeptídeos/síntese química , Dipeptídeos/química , Desenho de Fármacos , Inibidores de Serina Proteinase/química , Estereoisomerismo
6.
J Antibiot (Tokyo) ; 74(10): 717-725, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34321608

RESUMO

The androgen receptor (AR) is an important therapeutic target for all clinical states of prostate cancer. We screened cultured broths of microorganisms for their ability to suppress androgen-dependent growth of human prostate cancer LNCaP and VCaP cells without cytotoxicity. We have already identified androprostamine A (APA) from a Streptomyces culture broth as a functional inhibitor of AR. APA repressed R1881 (the synthetic androgen methyltrienolone)-induced androgen-regulated gene expression and dramatically inhibited R1881-induced prostate-specific antigen levels. However, APA did not act as an AR antagonist and did not inhibit AR transcriptional activity. Moreover, AS2405, an APA derivative, significantly inhibited the growth of VCaP cells in SCID mice upon oral administration.


Assuntos
Antineoplásicos/uso terapêutico , Cinamatos/uso terapêutico , Oligopeptídeos/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cinamatos/química , Cinamatos/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Estrutura Molecular , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Streptomyces/metabolismo
7.
J Antibiot (Tokyo) ; 74(10): 758-762, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34326482

RESUMO

Four new quinofuracins F - I were isolated from the culture broth of Staphylotrichum boninense PF1444. The structures of quinofuracins F - I were elucidated by extensive spectroscopic analysis. These quinofuracins induced tumor suppressor protein p53-dependent cell death in human glioblastoma LNZTA3 cells.


Assuntos
Antineoplásicos/farmacologia , Ascomicetos/química , Nitrofurazona/análogos & derivados , Nitrofurazona/química , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma , Humanos , Estrutura Molecular , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
8.
Yakugaku Zasshi ; 141(3): 315-321, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-33642497

RESUMO

Gold compounds have been employed throughout history to treat various types of disease, from ancient times to the present day. In the year 1985, auranofin, a gold-containing compound, was approved by U.S. Food and Drug Administration (FDA) as a therapeutic agent to target rheumatoid arthritis that would facilitate easy oral drug administration as opposed to conventional intramuscular injection used in treatments. Furthermore, auranofin demonstrates promising results for the treatment of various diseases beyond rheumatoid arthritis, including cancer, neurodegenerative diseases, acquired immune deficiency syndrome, and bacterial and parasitic infections. Various potential novel applications for auranofin have been proposed for treating human diseases. Auranofin has previously been demonstrated to inhibit thioredoxin reductase (TrxR) involved within the thioredoxin (Trx) system that comprises one of the critical cellular redox systems within the body. TrxR comprises the sole known enzyme that catalyzes Trx reduction. With cancers in particular, TrxR inhibition facilitates an increase in cellular oxidative stress and suppresses tumor growth. In this review, we describe the potential of auranofin to serve as an anticancer agent and further drug repurposing to utilize this as a strategy for further appropriate drug developments.


Assuntos
Antineoplásicos , Artrite Reumatoide/tratamento farmacológico , Auranofina/administração & dosagem , Auranofina/farmacologia , Reposicionamento de Medicamentos , Desenvolvimento de Medicamentos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Estresse Oxidativo , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores
9.
J Biol Chem ; 295(49): 16678-16690, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32978257

RESUMO

Large regions in tumor tissues, particularly pancreatic cancer, are hypoxic and nutrient-deprived because of unregulated cell growth and insufficient vascular supply. Certain cancer cells, such as those inside a tumor, can tolerate these severe conditions and survive for prolonged periods. We hypothesized that small molecular agents, which can preferentially reduce cancer cell survival under nutrient-deprived conditions, could function as anticancer drugs. In this study, we constructed a high-throughput screening system to identify such small molecules and screened chemical libraries and microbial culture extracts. We were able to determine that some small molecular compounds, such as penicillic acid, papyracillic acid, and auranofin, exhibit preferential cytotoxicity to human pancreatic cancer cells under nutrient-deprived compared with nutrient-sufficient conditions. Further analysis revealed that these compounds target to redox systems such as GSH and thioredoxin and induce accumulation of reactive oxygen species in nutrient-deprived cancer cells, potentially contributing to apoptosis under nutrient-deprived conditions. Nutrient-deficient cancer cells are often deficient in GSH; thus, they are susceptible to redox system inhibitors. Targeting redox systems might be an attractive therapeutic strategy under nutrient-deprived conditions of the tumor microenvironment.


Assuntos
Alcenos/química , Auranofina/química , Glutationa/química , Ácido Penicílico/química , Compostos de Espiro/química , Tiorredoxinas/química , Alcenos/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Auranofina/farmacologia , Auranofina/uso terapêutico , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Glutationa/metabolismo , Humanos , Metaboloma/efeitos dos fármacos , Camundongos , Camundongos Nus , Nutrientes/química , Nutrientes/deficiência , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Ácido Penicílico/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Compostos de Espiro/farmacologia , Tiorredoxinas/metabolismo , Regulação para Cima/efeitos dos fármacos
10.
J Nat Prod ; 82(5): 1120-1127, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31017786

RESUMO

Leucinostatin Y, a new peptaibiotic, was isolated from the culture broth of the entomoparasitic fungus Purpureocillium lilacinum 40-H-28. The planar structure was elucidated by detailed analysis of its NMR and MS/MS data. The absolute configurations of the amino acids were partially determined by an advanced Marfey's method. The biological activities of leucinostatin Y were assessed using human pancreatic cancer cells, revealing the importance of the C-terminus of leucinostatins for preferential cytotoxicity to cancer cells under glucose-deprived conditions and inhibition of mitochondrial function.


Assuntos
Antineoplásicos/isolamento & purificação , Paecilomyces/química , Peptaibols/isolamento & purificação , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Espectroscopia de Ressonância Magnética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Peptaibols/química , Peptaibols/farmacologia
11.
Chem Pharm Bull (Tokyo) ; 67(3): 186-191, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30827998

RESUMO

Gold compounds have a long history of use in medicine. Auranofin was developed more than 30 years ago as an oral therapy for rheumatoid arthritis. Now, however, auranofin is rarely used in clinical practice despite its efficacy for treating rheumatoid arthritis because more novel antirheumatic medications are available. Although its use in clinical practice has decreased, studies on auranofin have continued and it shows promise for the treatment of several different diseases, including cancer and bacterial and parasitic infections. Several potential novel applications of auranofin for treating human disease have been proposed. Auranofin inhibits the activity of thioredoxin reductase (TrxR), an enzyme of the thioredoxin (Trx) system that is important for maintaining the intracellular redox state. Particularly in cancers, TrxR inhibition leads to an increase in cellular oxidative stress and induces apoptosis. TrxR overexpression is associated with aggressive tumor progression and poor survival in patients with breast, ovarian, and lung cancers. The Trx system may represent an attractive target for the development of new cancer treatments. Therefore, the TrxR inhibitor auranofin may be a potent anticancer agent. This review summarizes the current understanding of auranofin for cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Auranofina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Neoplasias/enzimologia , Neoplasias/metabolismo , Neoplasias/patologia , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/metabolismo
12.
J Antibiot (Tokyo) ; 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28874847

RESUMO

Mitogen-activated protein kinase (MAPK) pathways that direct cellular responses are involved in various biological processes; the RAS-RAF-MEK-ERK pathway is one of the most important MAPK pathways. It is frequently activated in human malignant tumors such as melanomas, thyroid tumors and colorectal carcinomas. Therefore, targeting this pathway has been considered an attractive strategy for new anticancer drugs. In particular, MEK is a promising target because it is a kinase that directly phosphorylates ERK. We performed a screening to discover new MEK inhibitors, and found a guanine derivative produced by Streptomyces sp. MK63-43F2. This guanine derivative was identified to be 2-amino-4-methoxy-5-cyanopyrrolo[2,3-d]pyrimidine (1) through spectroscopic analysis. Compound 1 inhibited MEK1 kinase activity in an ATP-dependent manner and suppressed the phosphorylation of ERK in cancer cells and cell proliferation. Therefore, 1 might be a potent lead compound for new MEK inhibitors.The Journal of Antibiotics advance online publication, 6 September 2017; doi:10.1038/ja.2017.100.

13.
J Antibiot (Tokyo) ; 70(5): 542-550, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28196975

RESUMO

Tyropeptins are new proteasome inhibitors isolated from the culture broth of Kitasatospora sp. MK993-dF2. Tyropeptins permeate cell membranes, inhibit intracellular proteasomes and reduce the degradation of ubiquitinated proteins in mammalian cells. We performed structure-based drug design and structure-activity relationship studies on tyropeptin derivatives to obtain valuable information of derivatives. Among the synthesized tyropeptin derivatives, some boronic acid derivatives exhibited potent antitumor effects against human multiple myeloma. In this review, we summarize the discovery of tyropeptins and the development of tyropeptin derivatives.


Assuntos
Dipeptídeos/isolamento & purificação , Desenho de Fármacos , Streptomycetaceae/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Dipeptídeos/química , Dipeptídeos/farmacologia , Humanos , Complexo de Endopeptidases do Proteassoma , Inibidores de Proteassoma/química , Inibidores de Proteassoma/isolamento & purificação , Inibidores de Proteassoma/farmacologia , Relação Estrutura-Atividade
15.
Chem Pharm Bull (Tokyo) ; 64(7): 982-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27373659

RESUMO

Syntheses of androprostamine A (1), and resormycin (3), anti-prostate cancer peptidyl natural products produced by microorganisms, were completed. The characteristic enamide structures of these compounds were installed using the Horner-Wadsworth-Emmons reaction from the corresponding phosphonates in reasonable Z-selectivity.


Assuntos
Cinamatos/síntese química , Oligopeptídeos/síntese química , Propionatos/síntese química , Cinamatos/química , Estrutura Molecular , Oligopeptídeos/química , Propionatos/química , Estereoisomerismo
16.
Biosci Biotechnol Biochem ; 80(4): 774-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26806328

RESUMO

Four unique isoflavone aglycones (barpisoflavone A (1), 2'-hydroxygenistein (2), 5-methylgenistein (3), and gerontoisoflavone A (4)) whose structures were related to genistein were prepared from the tuber of Apios americana Medik. We examined the estrogen receptor and androgen receptor binding activities, estrogen agonistic activities, antioxidant activities, and α-glucosidase inhibitory activities of 1-4. The results obtained showed that 2 possessed potent and 1, 3, and 4 possessed moderate estrogen partial agonistic activities, 1 and 2 possessed moderate antioxidant activities, and 2 and 3 possessed moderate α-glucosidase inhibitory activities.


Assuntos
Fabaceae/química , Isoflavonas/farmacologia
17.
Int Immunopharmacol ; 37: 23-30, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26589840

RESUMO

The proteasome influences cellular homeostasis through the degradation of regulatory proteins, many of which are also involved in disease pathogenesis. In particular, numerous regulatory proteins associated with tumor growth, such as cyclins, cyclin-dependent kinase inhibitors, tumor suppressors, and NF-κB inhibitors are degraded by the proteasome. Proteasome inhibitors can stabilize these regulatory proteins, resulting in the suppression of tumor development and the regulation of immune responses. Thus, proteasome inhibitors are promising candidate antitumor agents and immune-regulatory agents. Bortezomib is the first-in-class proteasome inhibitor approved for the treatment of multiple myeloma. Despite its high efficiency, however, a large proportion of patients do not attain sufficient clinical response due to toxicity and drug resistance. Therefore, the development of new proteasome inhibitors with improved pharmacological properties is needed. Natural products produced by microorganisms are a promising source of such compounds. This review provides an overview of proteasome inhibitors produced by microorganisms, with special focus on inhibitors isolated from actinomycetes.


Assuntos
Actinobacteria/química , Antineoplásicos/uso terapêutico , Produtos Biológicos/uso terapêutico , Bortezomib/uso terapêutico , Fatores Imunológicos/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Proteassoma/uso terapêutico , Actinobacteria/metabolismo , Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Bortezomib/química , Bortezomib/farmacologia , Burkholderiaceae/química , Burkholderiaceae/metabolismo , Descoberta de Drogas/métodos , Humanos , Fatores Imunológicos/farmacologia , Terapia de Alvo Molecular/métodos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/síntese química , Inibidores de Proteassoma/farmacologia , Xylariales/química , Xylariales/metabolismo
19.
J Nat Prod ; 78(2): 188-95, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25611347

RESUMO

Quinofuracins A-E, novel anthraquinone derivatives containing ß-D-galactofuranose that were isolated from the fungus Staphylotrichum boninense PF1444, induced p53-dependent cell death in human tumor cells. The structures of quinofuracins A-E, including absolute configurations, were elucidated by extensive spectroscopic analysis and chemical transformation studies. Quinofuracins were classified into three groups according to the aglycone moieties. 5'-Oxoaverantin was present in quinofuracins A-C, whereas averantin and versicolorin B were identified in quinofuracins D and E, respectively. These quinofuracins induced p53-dependent growth suppression in human glioblastoma LNZTA3 cells.


Assuntos
Antraquinonas/isolamento & purificação , Antraquinonas/farmacologia , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Ascomicetos/química , Proteína Supressora de Tumor p53/metabolismo , Antraquinonas/química , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/tratamento farmacológico , Humanos , Japão , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Proteína Supressora de Tumor p53/efeitos dos fármacos
20.
J Antibiot (Tokyo) ; 68(4): 279-85, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25269460

RESUMO

Androgen receptor (AR) is a validated target in all clinical states of prostate cancer. Androprostamines A and B, the new inhibitors of androgen receptor, were isolated from Streptomyces sp. MK932-CF8. Their structures were determined by the spectroscopic analysis, degradation studies and synthesis. Androprostamines showed potent inhibitory effect against androgen-dependent growth of human prostate cancer cells without cytotoxicity and repressed the androgen-induced expression of AR-regulated genes.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Streptomyces/metabolismo , Antagonistas de Receptores de Andrógenos/isolamento & purificação , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Cinamatos/isolamento & purificação , Cinamatos/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Oligopeptídeos/isolamento & purificação , Oligopeptídeos/farmacologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Receptores Androgênicos/efeitos dos fármacos , Receptores Androgênicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA