Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38258019

RESUMO

The honey bee Apis mellifera is exposed to a variety of biotic and abiotic stressors, such as the highly prevalent microsporidian parasite Nosema (Vairimorpha) ceranae and neonicotinoid insecticides. Both can affect honey bee physiology and microbial gut communities, eventually reducing its lifespan. They can also have a combined effect on the insect's survival. The use of bacterial probiotics has been proposed to improve honey bee health, but their beneficial effect remains an open question. In the present study, western honey bees were experimentally infected with N. ceranae spores, chronically exposed to the neonicotinoid thiamethoxam, and/or supplied daily with the homofermentative bacterium Pediococcus acidilactici MA18/5M thought to improve the honey bees' tolerance to the parasite. Deep shotgun metagenomic sequencing allowed the response of the gut microbiota to be investigated with a taxonomic resolution at the species level. All treatments induced significant changes in honey bee gut bacterial communities. Nosema ceranae infection increased the abundance of Proteus mirabilis, Frischella perrara, and Gilliamella apicola and reduced the abundance of Bifidobacterium asteroides, Fructobacillus fructosus, and Lactobacillus spp. Supplementation with P. acidilactici overturned some of these alterations, bringing back the abundance of some altered species close to the relative abundance found in the controls. Surprisingly, the exposure to thiamethoxam also restored the relative abundance of some species modulated by N. ceranae. This study shows that stressors and probiotics may have an antagonistic impact on honey bee gut bacterial communities and that P. acidilactici may have a protective effect against the dysbiosis induced by an infection with N. ceranae.

2.
Environ Microbiol ; 25(12): 3406-3422, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37916456

RESUMO

The advent of high-throughput sequencing has led to the discovery of a considerable diversity of microbial eukaryotes in aquatic ecosystems, nevertheless, their function and contribution to the trophic food web functioning remain poorly characterized especially in freshwater ecosystems. Based on metabarcoding data obtained from a meromictic lake ecosystem (Pavin, France), we performed a morpho-physio-phenological traits-based approach to infer functional groups of microbial eukaryotes. Metatranscriptomic data were also analysed to assess the metabolic potential of these groups across the diel cycle, size fraction, sampling depth, and periods. Our analysis highlights a huge microbial eukaryotic diversity in the monimolimnion characterized by numerous saprotrophs expressing transcripts related to sulfur and nitrate metabolism as well as dissolved and particulate organic matter degradation. We also describe strong seasonal variations of microbial eukaryotes in the mixolimnion, especially for parasites and mixoplankton. It appears that the water mixing (occurring during spring and autumn) which benefits photosynthetic host communities also promotes parasitic fungi dissemination and over-expression of genes involved in the zoospore phototaxis and stage transition in the parasitic cycle. Mixoplanktonic haptophytes over-expressing photosynthesis-, endocytosis- and phagosome-linked genes under nutrient limitation also suggest that phagotrophy may provide them an advantage over non-phagotrophic phytoplankton.


Assuntos
Ecossistema , Lagos , Lagos/microbiologia , Fungos/genética , Cadeia Alimentar , Fitoplâncton
3.
Mol Ecol Resour ; 23(1): 222-232, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35941762

RESUMO

Freshwater is a critical resource for human survival but severely threatened by anthropogenic activities and climate change. These changes strongly impact the abundance and diversity of the microbial communities which are key players in the functioning of these aquatic ecosystems. Although widely documented since the emergence of high-throughput sequencing approaches, the information on these natural microbial communities is scattered among thousands of publications and it is therefore difficult to investigate the temporal dynamics and the spatial distribution of microbial taxa within or across ecosystems. To fill this gap and in the FAIR principles context we built a manually curated and standardized microbial freshwater -omics database (FreshOmics). Based on recognized ontologies (ENVO, MIMICS, GO, ISO), FreshOmics describes 29 different types of freshwater ecosystems and uses standardized attributes to depict biological samples, sequencing protocols and article attributes for more than 2487 geographical locations across 71 countries around the world. The database contains 24,808 sequence identifiers (i.e., Run_Id / Exp_ID, mainly from SRA/DDBJ SRA/ENA, GSA and MG-RAST repositories) covering all sequence-based -omics approaches used to investigate bacteria, archaea, microbial eukaryotes, and viruses. Therefore, FreshOmics allows accurate and comprehensive analyses of microbial communities to answer questions related to their roles in freshwater ecosystems functioning and resilience, especially through meta-analysis studies. This collection also highlights different sort of errors in published works (e.g., wrong coordinates, sample type, material, spelling).


Assuntos
Água Doce , Microbiota , Humanos , Microbiota/genética , Bactérias/genética , Archaea/genética , Sequenciamento de Nucleotídeos em Larga Escala
4.
Microb Ecol ; 85(4): 1630-1633, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35552794

RESUMO

Microsporidia are a large group of obligate intracellular eukaryotic parasites. Recent studies suggest that their diversity can be huge in freshwater lake ecosystems especially in the < 150-µm size fraction. However, little is known about their hosts and therefore their impact on the trophic food web functioning. In this study, single cell analysis and fluorescence microscopy were used to detect new host-parasite association within rotifer communities in lake Aydat (France). Our analysis showed the existence of a potential new species belonging to the Crispospora genus able of infecting the rotifer Kellicottia with a high prevalence (42.5%) suggesting that Microsporidia could have a great impact on the rotifer populations' regulation in lakes.


Assuntos
Microsporídios , Microsporídios/fisiologia , Lagos/parasitologia , Ecossistema , Cadeia Alimentar , Análise de Célula Única
6.
Environ Microbiol ; 24(3): 1672-1686, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35246918

RESUMO

Microsporidia are a large group of obligate intracellular eukaryotic parasites related to Fungi. Recent studies suggest that their diversity has been greatly underestimated and little is known about their hosts other than metazoans, and thus about their impact on the communities at the base of the food web. In this work, we therefore studied the diversity of Microsporidia over one year and identified potential new hosts in small-sized fractions (<150 µm) in a lake ecosystem using a metabarcoding approach coupled with co-occurrence networks and tyramide signal amplification-fluorescent in situ hybridization. Our analysis shows a great Microsporidia diversity (1 472 OTUs), with an important part of this diversity being unknown. Temporal variations of this diversity have been observed, which might follow temporal variations of their potential hosts such as protists and microzooplankton. New hosts among them were identified as well as associations with phytoplankton. Indeed, repeated infections were observed in Kellicottia (rotifers) with a prevalence of 38% (infected individuals). Microsporidia inside a Stentor (ciliate) were also observed. Finally, potential infections of the diatom Asterionella were identified (prevalence <0.1%). The microsporidian host spectrum could be therefore even more important than previously described, and their role in the functioning of lake ecosystems is undoubtedly largely unknown.


Assuntos
Ecossistema , Microsporídios , Eucariotos , Interações Hospedeiro-Parasita , Humanos , Hibridização in Situ Fluorescente , Lagos , Microsporídios/genética , Filogenia
7.
Environ Microbiol ; 23(8): 4344-4359, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34081807

RESUMO

Microsporidia are obligate intracellular eukaryotic parasites known to parasitize many species of the animal kingdom as well as some protists. However, their diversity is underestimated, in part as a consequence of the failure of 'universal' primers to detect them in metabarcoding studies. Besides, due to the inconsistency between taxonomy and phylogenetic data, available databases may assign incorrectly sequences obtained with high-throughput sequencing. In this work, we developed a comprehensive reference database which positions microsporidian SSU rRNA gene sequences within a coherent ranked phylogenetic framework. We used this phylogenetic framework to study the microsporidian diversity in lacustrine ecosystems, focusing on < 150 µm planktonic size fractions. Our analysis shows a high diversity of Microsporidia, with the identification of 1531 OTUs distributed within seven clades, of which 76% were affiliated to clade IV2 and 20% to clade I (nomenclature presented hereby). About a quarter of the obtained sequences shared less than 85% identity to the closest known species, which might represent undescribed genera or families infecting small hosts. Variations in the abundance of Microsporidia were recorded between the two lakes sampled and across the sampling period, which might be explained by spatio-temporal variations of their potential hosts such as microeukaryotes and metazooplankton.


Assuntos
Lagos , Microsporídios , Animais , Ecossistema , Eucariotos , Humanos , Microsporídios/genética , Filogenia
8.
J Invertebr Pathol ; 172: 107348, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32119953

RESUMO

Honeybees ensure a key ecosystem service by pollinating many agricultural crops and wild plants. However, in the past few decades, managed bee colonies have been declining in Europe and North America. Researchers have emphasized both parasites and pesticides as the most important factors. Infection by the parasite Nosema ceranae and exposure to pesticides can contribute to gut dysbiosis, impacting the honeybee physiology. Here, we examined and quantified the effects of N. ceranae, the neonicotinoid thiamethoxam, the phenylpyrazole fipronil and the carboxamide boscalid, alone and in combination, on the honeybee gut microbiota. Chronic exposures to fipronil and thiamethoxam alone or combined with N. ceranae infection significantly decreased honeybee survival whereas the fungicide boscalid had no effect on uninfected bees. Interestingly, increased mortality was observed in N. ceranae-infected bees after exposure to boscalid, with synergistic negative effects. Regarding gut microbiota composition, co-exposure to the parasite and each pesticide led to decreased abundance of Alphaproteobacteria, and increased abundance of Gammaproteobacteria. The parasite also induced an increase of bacterial alpha-diversity (species richness). Our findings demonstrated that exposure of honeybees to N. ceranae and/or pesticides play a significant role in colony health and is associated with the establishment of a dysbiotic gut microbiota.


Assuntos
Abelhas/efeitos dos fármacos , Abelhas/microbiologia , Fungicidas Industriais/efeitos adversos , Microbioma Gastrointestinal/fisiologia , Inseticidas/efeitos adversos , Nosema/fisiologia , Animais , Compostos de Bifenilo/efeitos adversos , Niacinamida/efeitos adversos , Niacinamida/análogos & derivados , Pirazóis/efeitos adversos , Tiametoxam/efeitos adversos
9.
Pestic Biochem Physiol ; 163: 138-146, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31973850

RESUMO

Honeybees ensure a key ecosystemic service by pollinating many agricultural crops and wild plants. However, since few decades, managed bee colonies have declined worldwide. This phenomenon is considered to be multifactorial, with a strong emphasis on both parasites and pesticides. Infection by the parasite Nosema ceranae and exposure to pesticides can contribute to adverse effects, resulting in a perturbation of the honeybee physiology. We thus hypothesized that probiotic treatment could be promising to treat or prevent these disturbances. The aim of this study was to evaluate the effects of probiotics on N. ceranae-infected and intoxicated honeybees (by the insecticide thiamethoxam and the fungicide boscalid). For this purpose, experiments were conducted with five probiotics. Among them, Pediococcus acidilactici (PA) showed the best protective effect against the parasite and pesticides. PA significantly improved the infected honeybee lifespan as prophylactic and curative treatments (respectively 2.3 fold and 1.7 fold). Furthermore, the exposure to pesticides induced an increase of honeybee mortality compared with the control group (p < .001) that was restored by the PA treatment. Despite its beneficial effect on honeybee lifespan, the PA administration did not induce changes in the gut bacterial communities (neither in abundance or diversity). N. ceranae and the pesticides were shown to deregulate genes involved in honeybee development (vitellogenin), immunity (serine protease 40, defensin) and detoxification system (glutathione peroxidase-like 2, catalase), and these effects were corrected by the PA treatment. This study highlights the promising use of PA to protect honeybees from both pathogens and pesticides.


Assuntos
Inseticidas , Nosema , Animais , Abelhas , Pediococcus
10.
Microbes Environ ; 34(3): 226-233, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31378758

RESUMO

The gut of the European honeybee Apis mellifera is the site of exposure to multiple stressors, such as pathogens and ingested chemicals. Therefore, the gut microbiota, which contributes to host homeostasis, may be altered by these stressors. The abundance of major bacterial taxa in the gut was evaluated in response to infection with the intestinal parasite Nosema ceranae or chronic exposure to low doses of the neurotoxic insecticides coumaphos, fipronil, thiamethoxam, and imidacloprid. Experiments were performed under laboratory conditions on adult workers collected from hives in February (winter bees) and July (summer bees) and revealed season-dependent changes in the bacterial community composition. N. ceranae and a lethal fipronil treatment increased the relative abundance of both Gilliamella apicola and Snodgrassella alvi in surviving winter honeybees. The parasite and a sublethal exposure to all insecticides decreased the abundance of Bifidobacterium spp. and Lactobacillus spp. regardless of the season. The similar effects induced by insecticides belonging to distinct molecular families suggested a shared and indirect mode of action on the gut microbiota, possibly through aspecific alterations in gut homeostasis. These results demonstrate that infection and chronic exposure to low concentrations of insecticides may affect the honeybee holobiont.


Assuntos
Abelhas/efeitos dos fármacos , Abelhas/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Inseticidas/toxicidade , Nosema/fisiologia , Animais , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Abelhas/fisiologia , Exposição Ambiental , Microbioma Gastrointestinal/fisiologia , Homeostase
11.
J Invertebr Pathol ; 159: 121-128, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30268675

RESUMO

The invasive microsporidian species, Nosema ceranae, causes nosemosis in honeybees and is suspected to be involved in Western honeybee (Apis mellifera) declines worldwide. The midgut of honeybees is the site of infection; the microsporidium can disturb the functioning of this organ and, thus, the bee physiology. Host defense against pathogens is not limited to resistance (i.e. the immune response) but also involves resilience. This process implies that the host can tolerate and repair damage inflicted by the infection- by the pathogen itself or by an excessive host immune response. Enterocyte damage caused by N. ceranae can be compensated by proliferation of intestinal stem cells (ISCs) that are under the control of multiple pathways. In the present study, we investigated the impact of N. ceranae on honeybee epithelium renewal by following the mitotic index of midgut stem cells during a 22-day N. ceranae infection. Fluorescence in situ hybridization (FISH) and immunostaining experiments were performed to follow the parasite proliferation/progression in the intestinal tissue, especially in the ISCs as they are key cells for the midgut homeostasis. We also monitored the transcriptomic profile of 7 genes coding for key proteins involved in pathways implicated in the gut epithelium renewal and homeostasis. We have shown for the first time that N. ceranae can negatively alter the gut epithelium renewal rate and disrupt some signaling pathways involved in the gut homeostasis. This alteration is correlated to a reduced longevity of N. ceranae-infected honeybees and we can assume that honeybee susceptibility to N. ceranae could be due to an impaired ability to repair gut damage.


Assuntos
Abelhas/parasitologia , Mucosa Intestinal/patologia , Mucosa Intestinal/parasitologia , Animais , Nosema
12.
PLoS One ; 12(8): e0182869, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28792539

RESUMO

Clouds are key components in Earth's functioning. In addition of acting as obstacles to light radiations and chemical reactors, they are possible atmospheric oases for airborne microorganisms, providing water, nutrients and paths to the ground. Microbial activity was previously detected in clouds, but the microbial community that is active in situ remains unknown. Here, microbial communities in cloud water collected at puy de Dôme Mountain's meteorological station (1465 m altitude, France) were fixed upon sampling and examined by high-throughput sequencing from DNA and RNA extracts, so as to identify active species among community members. Communities consisted of ~103-104 bacteria and archaea mL-1 and ~102-103 eukaryote cells mL-1. They appeared extremely rich, with more than 28 000 distinct species detected in bacteria and 2 600 in eukaryotes. Proteobacteria and Bacteroidetes largely dominated in bacteria, while eukaryotes were essentially distributed among Fungi, Stramenopiles and Alveolata. Within these complex communities, the active members of cloud microbiota were identified as Alpha- (Sphingomonadales, Rhodospirillales and Rhizobiales), Beta- (Burkholderiales) and Gamma-Proteobacteria (Pseudomonadales). These groups of bacteria usually classified as epiphytic are probably the best candidates for interfering with abiotic chemical processes in clouds, and the most prone to successful aerial dispersion.


Assuntos
Atmosfera , Microbiologia da Água , Altitude , França , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase , Análise de Componente Principal
13.
Sci Total Environ ; 599-600: 1222-1232, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28514840

RESUMO

Plastic is a broad name given to different polymers with high molecular weight that impact wildlife. Their fragmentation leads to a continuum of debris sizes (meso to microplastics) entrapped in gyres and colonized by microorganisms. In the present work, the structure of eukaryotes, bacteria and Archaea was studied by a metabarcoding approach, and statistical analysis associated with network building was used to define a core microbiome at the plastic surface. Most of the bacteria significantly associated with the plastic waste originated from non-marine ecosystems, and numerous species can be considered as hitchhikers, whereas others act as keystone species (e.g., Rhodobacterales, Rhizobiales, Streptomycetales and Cyanobacteria) in the biofilm. The chemical analysis provides evidence for a specific colonization of the polymers. Alphaproteobacteria and Gammaproteobacteria significantly dominated mesoplastics consisting of poly(ethylene terephthalate) and polystyrene. Polyethylene was also dominated by these bacterial classes and Actinobacteria. Microplastics were made of polyethylene but differed in their crystallinity, and the majorities were colonized by Betaproteobacteria. Our study indicated that the bacteria inhabiting plastics harboured distinct metabolisms from those present in the surrounding water. For instance, the metabolic pathway involved in xenobiotic degradation was overrepresented on the plastic surface.


Assuntos
Biofilmes , Monitoramento Ambiental , Resíduos de Alimentos , Plásticos , Microbiologia da Água , Animais , Oceano Atlântico , Bactérias/classificação , Código de Barras de DNA Taxonômico , Polietileno , Navios , Poluentes Químicos da Água
14.
PLoS One ; 11(1): e0145558, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26734727

RESUMO

Here we describe the natural occurrence of bacteria of the class Dehalococcoidia (DEH) and their diversity at different depths in anoxic waters of a remote meromictic lake (Lake Pavin) using 16S rRNA gene amplicon sequencing and quantitative PCR. Detected DEH are phylogenetically diverse and the majority of 16S rRNA sequences have less than 91% similarity to previously isolated DEH 16S rRNA sequences. To predict the metabolic potential of detected DEH subgroups and to assess if they encode genes to transform halogenated compounds, we enriched DEH-affiliated genomic DNA by using a specific-gene capture method and probes against DEH-derived 16S rRNA genes, reductive dehalogenase genes and known insertion sequences. Two reductive dehalogenase homologous sequences were identified from DEH-enriched genomic DNA, and marker genes in the direct vicinity confirm that gene fragments were derived from DEH. The low sequence similarity with known reductive dehalogenase genes suggests yet-unknown catabolic potential in the anoxic zone of Lake Pavin.


Assuntos
Proteínas de Bactérias/genética , Chloroflexi/genética , Lagos/microbiologia , Oxirredutases/genética , Proteínas de Bactérias/metabolismo , Chloroflexi/classificação , Chloroflexi/enzimologia , Genoma Bacteriano , Oxirredutases/metabolismo , Oxigênio/metabolismo , Filogenia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/classificação , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Temperatura
15.
Microb Ecol ; 70(2): 473-83, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25851445

RESUMO

To test if different niches for potential nitrifiers exist in estuarine systems, we assessed by pyrosequencing the diversity of archaeal gene transcript markers for taxonomy (16S ribosomal RNA (rRNA)) during an entire year along a salinity gradient in surface waters of the Charente estuary (Atlantic coast, France). We further investigated the potential for estuarine prokaryotes to oxidize ammonia and hydrolyze urea by quantifying thaumarchaeal amoA and ureC and bacterial amoA transcripts. Our results showed a succession of different nitrifiers from river to sea with bacterial amoA transcripts dominating in the freshwater station while archaeal transcripts were predominant in the marine station. The 16S rRNA sequence analysis revealed that Thaumarchaeota marine group I (MGI) were the most abundant overall but other archaeal groups like Methanosaeta were also potentially active in winter (December-March) and Euryarchaeota marine group II (MGII) were dominant in seawater in summer (April-August). Each station also contained different Thaumarchaeota MGI phylogenetic clusters, and the clusters' microdiversity was associated to specific environmental conditions suggesting the presence of ecotypes adapted to distinct ecological niches. The amoA and ureC transcript dynamics further indicated that some of the Thaumarchaeota MGI subclusters were involved in ammonia oxidation through the hydrolysis of urea. Our findings show that ammonia-oxidizing Archaea and Bacteria were adapted to contrasted conditions and that the Thaumarchaeota MGI diversity probably corresponds to distinct metabolisms or life strategies.


Assuntos
Archaea/genética , Archaea/classificação , Bactérias/classificação , Bactérias/genética , DNA Ribossômico , Estuários , Água Doce/microbiologia , Filogenia , Rios/microbiologia , Água do Mar/microbiologia
16.
PLoS One ; 9(6): e100791, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24967735

RESUMO

Intracellular pathogens including bacteria, viruses and protozoa hijack host cell functions to access nutrients and to bypass cellular defenses and immune responses. These strategies have been acquired through selective pressure and allowed pathogens to reach an appropriate cellular niche for their survival and growth. To get new insights on how parasites hijack host cellular functions, we developed a SILAC (Stable Isotope Labeling by Amino Acids in Cell culture) quantitative proteomics workflow. Our study focused on deciphering the cross-talk in a host-parasite association, involving human foreskin fibroblasts (HFF) and the microsporidia Anncaliia algerae, a fungus related parasite with an obligate intracellular lifestyle and a strong host dependency. The host-parasite cross-talk was analyzed at five post-infection times 1, 6, 12 and 24 hours post-infection (hpi) and 8 days post-infection (dpi). A significant up-regulation of four interferon-induced proteins with tetratricopeptide repeats IFIT1, IFIT2, IFIT3 and MX1 was observed at 8 dpi suggesting a type 1 interferon (IFN) host response. Quantitative alteration of host proteins involved in biological functions such as signaling (STAT1, Ras) and reduction of the translation activity (EIF3) confirmed a host type 1 IFN response. Interestingly, the SILAC approach also allowed the detection of 148 A. algerae proteins during the kinetics of infection. Among these proteins many are involved in parasite proliferation, and an over-representation of putative secreted effectors proteins was observed. Finally our survey also suggests that A. algerae could use a transposable element as a lure strategy to escape the host innate immune system.


Assuntos
Interações Hospedeiro-Parasita , Espaço Intracelular/parasitologia , Microsporídios/fisiologia , Elementos de DNA Transponíveis/genética , Fibroblastos/citologia , Fibroblastos/parasitologia , Proteínas Fúngicas/metabolismo , Humanos , Espaço Intracelular/metabolismo , Microsporídios/genética , Microsporídios/metabolismo , Proteoma
17.
BMC Bioinformatics ; 11: 478, 2010 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-20860850

RESUMO

BACKGROUND: Microorganisms display vast diversity, and each one has its own set of genes, cell components and metabolic reactions. To assess their huge unexploited metabolic potential in different ecosystems, we need high throughput tools, such as functional microarrays, that allow the simultaneous analysis of thousands of genes. However, most classical functional microarrays use specific probes that monitor only known sequences, and so fail to cover the full microbial gene diversity present in complex environments. We have thus developed an algorithm, implemented in the user-friendly program Metabolic Design, to design efficient explorative probes. RESULTS: First we have validated our approach by studying eight enzymes involved in the degradation of polycyclic aromatic hydrocarbons from the model strain Sphingomonas paucimobilis sp. EPA505 using a designed microarray of 8,048 probes. As expected, microarray assays identified the targeted set of genes induced during biodegradation kinetics experiments with various pollutants. We have then confirmed the identity of these new genes by sequencing, and corroborated the quantitative discrimination of our microarray by quantitative real-time PCR. Finally, we have assessed metabolic capacities of microbial communities in soil contaminated with aromatic hydrocarbons. Results show that our probe design (sensitivity and explorative quality) can be used to study a complex environment efficiently. CONCLUSIONS: We successfully use our microarray to detect gene expression encoding enzymes involved in polycyclic aromatic hydrocarbon degradation for the model strain. In addition, DNA microarray experiments performed on soil polluted by organic pollutants without prior sequence assumptions demonstrate high specificity and sensitivity for gene detection. Metabolic Design is thus a powerful, efficient tool that can be used to design explorative probes and monitor metabolic pathways in complex environments, and it may also be used to study any group of genes. The Metabolic Design software is freely available from the authors and can be downloaded and modified under general public license.


Assuntos
Sondas de DNA/química , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Software , Sphingomonas/genética , Algoritmos , Biodegradação Ambiental , Primers do DNA , Variação Genética , Análise em Microsséries , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Microbiologia do Solo , Poluentes do Solo , Sphingomonas/metabolismo
18.
Bioinformatics ; 23(19): 2550-7, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17698494

RESUMO

MOTIVATION: Microbial diversity is still largely unknown in most environments, such as soils. In order to get access to this microbial 'black-box', the development of powerful tools such as microarrays are necessary. However, the reliability of this approach relies on probe efficiency, in particular sensitivity, specificity and explorative power, in order to obtain an image of the microbial communities that is close to reality. RESULTS: We propose a new probe design algorithm that is able to select microarray probes targeting SSU rRNA at any phylogenetic level. This original approach, implemented in a program called 'PhylArray', designs a combination of degenerate and non-degenerate probes for each target taxon. Comparative experimental evaluations indicate that probes designed with PhylArray yield a higher sensitivity and specificity than those designed by conventional approaches. Applying the combined PhyArray/GoArrays strategy helps to optimize the hybridization performance of short probes. Finally, hybridizations with environmental targets have shown that the use of the PhylArray strategy can draw attention to even previously unknown bacteria.


Assuntos
Algoritmos , Sondas de DNA/genética , Marcação de Genes/métodos , Hibridização In Situ/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência de DNA/métodos , Software , Sequência de Bases , Dados de Sequência Molecular , Alinhamento de Sequência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...