Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
JCI Insight ; 8(18)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737261

RESUMO

Spinal muscular atrophy (SMA) is a pediatric-onset neuromuscular disorder caused by insufficient survival motor neuron (SMN) protein. SMN restorative therapies are now approved for the treatment of SMA; however, they are not curative, likely due to a combination of imperfect treatment timing, inadequate SMN augmentation, and failure to optimally target relevant organs. Here, we consider the implications of imperfect treatment administration, focusing specifically on outcomes for skeletal muscle. We examine the evidence that muscle plays a contributing role in driving neuromuscular dysfunction in SMA. Next, we discuss how SMN might regulate the health of myofibers and their progenitors. Finally, we speculate on therapeutic outcomes of failing to raise muscle SMN to healthful levels and present strategies to restore function to this tissue to ensure better treatment results.


Assuntos
Atrofia Muscular Espinal , Doenças Neuromusculares , Criança , Humanos , Atrofia Muscular Espinal/genética , Músculo Esquelético , Fenótipo , Fatores de Transcrição
2.
Neuron ; 111(9): 1423-1439.e4, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36863345

RESUMO

Reduced survival motor neuron (SMN) protein triggers the motor neuron disease, spinal muscular atrophy (SMA). Restoring SMN prevents disease, but it is not known how neuromuscular function is preserved. We used model mice to map and identify an Hspa8G470R synaptic chaperone variant, which suppressed SMA. Expression of the variant in the severely affected mutant mice increased lifespan >10-fold, improved motor performance, and mitigated neuromuscular pathology. Mechanistically, Hspa8G470R altered SMN2 splicing and simultaneously stimulated formation of a tripartite chaperone complex, critical for synaptic homeostasis, by augmenting its interaction with other complex members. Concomitantly, synaptic vesicular SNARE complex formation, which relies on chaperone activity for sustained neuromuscular synaptic transmission, was found perturbed in SMA mice and patient-derived motor neurons and was restored in modified mutants. Identification of the Hspa8G470R SMA modifier implicates SMN in SNARE complex assembly and casts new light on how deficiency of the ubiquitous protein causes motor neuron disease.


Assuntos
Atrofia Muscular Espinal , Animais , Camundongos , Modelos Animais de Doenças , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Sinapses/metabolismo , Transmissão Sináptica , Fatores de Transcrição/metabolismo
3.
Neurosci Insights ; 16: 26331055211011507, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589708

RESUMO

Considering its small size relative to the rest of the body, the mammalian brain has a disproportionately high energy requirement. This energy is supplied to the brain mainly in the form of glucose through the principal cerebral glucose transporter, Glut1. Inactivation of even a single copy of the Glut1 gene, SLC2A1, has dire consequences for the brain, starving cerebral neurons of energy and triggering the debilitating neurodevelopmental disorder, Glut1 deficiency syndrome (Glut1 DS). Considering the monogenic nature of Glut1 DS, the disease serves as an excellent paradigm to study the larger family of brain energy failure syndromes. Here we review how studies of Glut1 DS are proving instructive to the brain's energy needs, focusing first on the requirements, both spatial and temporal of the transporter, second, on proposed mechanisms linking low Glut1 to brain dysfunction and, finally on efforts to treat the disease and thus restore nutritional support to the brain. These studies promise not only to inform mechanisms and treatments for the relatively rare Glut1 DS but also the myriad other conditions involving the Glut1 protein.

4.
Ann Clin Transl Neurol ; 8(5): 1086-1095, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33788421

RESUMO

OBJECTIVE: To estimate muscle oxygen uptake and quantify fatigue during exercise in ambulatory individuals with spinal muscular atrophy (SMA) and healthy controls. METHODS: Peak aerobic capacity (VO2peak ) and workload (Wpeak ) were measured by cardiopulmonary exercise test (CPET) in 19 ambulatory SMA patients and 16 healthy controls. Submaximal exercise (SME) at 40% Wpeak was performed for 10 minutes. Change in vastus lateralis deoxygenated hemoglobin, measured by near-infrared spectroscopy, determined muscle oxygen uptake (ΔHHb) at rest and during CPET and SME. Dual energy X-ray absorptiometry assessed fat-free mass (FFM%). Fatigue was determined by percent change in workload or distance in the first compared to the last minute of SME (FatigueSME ) and six-minute walk test (Fatigue6MWT ), respectively. RESULTS: ΔHHb-PEAK, ΔHHb-SME, VO2peak , Wpeak , FFM%, and 6MWT distance were lower (P < 0.001), and Fatigue6MWT and FatigueSME were higher (P < 0.001) in SMA compared to controls. ΔHHb-PEAK correlated with FFM% (r = 0.50) and VO2peak (r = 0.41) only in controls. Only in SMA, Fatigue6MWT was inversely correlated with Wpeak (r = -0.69), and FatigueSME was inversely correlated with FFM% (r = -0.55) and VO2peak (r = -0.69). INTERPRETATION: This study provides further support for muscle mitochondrial dysfunction in SMA patients. During exercise, we observed diminished muscle oxygen uptake but no correlation with aerobic capacity or body composition. We also observed increased fatigue which correlated with decreased aerobic capacity, workload, and body composition. Understanding the mechanisms underlying diminished muscle oxygen uptake and increased fatigue during exercise in SMA may identify additional therapeutic targets that rescue symptomatic patients and mitigate their residual disease burden.


Assuntos
Exercício Físico/fisiologia , Fadiga/metabolismo , Miopatias Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/metabolismo , Consumo de Oxigênio/fisiologia , Absorciometria de Fóton , Adolescente , Adulto , Criança , Teste de Esforço , Fadiga/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miopatias Mitocondriais/complicações , Músculo Esquelético/diagnóstico por imagem , Atrofia Muscular Espinal/complicações , Espectroscopia de Luz Próxima ao Infravermelho , Adulto Jovem
5.
Neural Regen Res ; 16(10): 1978-1984, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33642371

RESUMO

Infantile-onset spinal muscular atrophy is the quintessential example of a disorder characterized by a predominantly neurodegenerative phenotype that nevertheless stems from perturbations in a housekeeping protein. Resulting from low levels of the Survival of Motor Neuron (SMN) protein, spinal muscular atrophy manifests mainly as a lower motor neuron disease. Why this is so and whether other cell types contribute to the classic spinal muscular atrophy phenotype continue to be the subject of intense investigation and are only now gaining appreciation. Yet, what is emerging is sometimes as puzzling as it is instructive, arguing for a careful re-examination of recent study outcomes, raising questions about established dogma in the field and making the case for a greater focus on milder spinal muscular atrophy models as tools to identify key mechanisms driving selective neuromuscular dysfunction in the disease. This review examines the evidence for novel molecular and cellular mechanisms that have recently been implicated in spinal muscular atrophy, highlights breakthroughs, points out caveats and poses questions that ought to serve as the basis of new investigations to better understand and treat this and other more common neurodegenerative disorders.

6.
JCI Insight ; 6(3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33351789

RESUMO

Paucity of the glucose transporter-1 (Glut1) protein resulting from haploinsufficiency of the SLC2A1 gene arrests cerebral angiogenesis and disrupts brain function to cause Glut1 deficiency syndrome (Glut1 DS). Restoring Glut1 to Glut1 DS model mice prevents disease, but the precise cellular sites of action of the transporter, its temporal requirements, and the mechanisms linking scarcity of the protein to brain cell dysfunction remain poorly understood. Here, we show that Glut1 functions in a cell-autonomous manner in the cerebral microvasculature to affect endothelial tip cells and, thus, brain angiogenesis. Moreover, brain endothelial cell-specific Glut1 depletion not only triggers a severe neuroinflammatory response in the Glut1 DS brain, but also reduces levels of brain-derived neurotrophic factor (BDNF) and causes overt disease. Reduced BDNF correlated with fewer neurons in the Glut1 DS brain. Controlled depletion of the protein demonstrated that brain pathology and disease severity was greatest when Glut1 scarcity was induced neonatally, during brain angiogenesis. Reducing Glut1 at later stages had mild or little effect. Our results suggest that targeting brain endothelial cells during early development is important to ensure proper brain angiogenesis, prevent neuroinflammation, maintain BDNF levels, and preserve neuron numbers. This requirement will be essential for any disease-modifying therapeutic strategy for Glut1 DS.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Transportador de Glucose Tipo 1/deficiência , Transportador de Glucose Tipo 1/metabolismo , Proteínas de Transporte de Monossacarídeos/deficiência , Animais , Animais Recém-Nascidos , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/deficiência , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Erros Inatos do Metabolismo dos Carboidratos/genética , Erros Inatos do Metabolismo dos Carboidratos/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Técnicas de Silenciamento de Genes , Transportador de Glucose Tipo 1/genética , Haploinsuficiência , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Neovascularização Fisiológica/genética , Neurônios/metabolismo , Neurônios/patologia , Fenótipo
7.
Epilepsia Open ; 5(3): 354-365, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32913944

RESUMO

Glut1 deficiency syndrome (Glut1DS) is a brain energy failure syndrome caused by impaired glucose transport across brain tissue barriers. Glucose diffusion across tissue barriers is facilitated by a family of proteins including glucose transporter type 1 (Glut1). Patients are treated effectively with ketogenic diet therapies (KDT) that provide a supplemental fuel, namely ketone bodies, for brain energy metabolism. The increasing complexity of Glut1DS, since its original description in 1991, now demands an international consensus statement regarding diagnosis and treatment. International experts (n = 23) developed a consensus statement utilizing their collective professional experience, responses to a standardized questionnaire, and serial discussions of wide-ranging issues related to Glut1DS. Key clinical features signaling the onset of Glut1DS are eye-head movement abnormalities, seizures, neurodevelopmental impairment, deceleration of head growth, and movement disorders. Diagnosis is confirmed by the presence of these clinical signs, hypoglycorrhachia documented by lumbar puncture, and genetic analysis showing pathogenic SLC2A1 variants. KDT represent standard choices with Glut1DS-specific recommendations regarding duration, composition, and management. Ongoing research has identified future interventions to restore Glut1 protein content and function. Clinical manifestations are influenced by patient age, genetic complexity, and novel therapeutic interventions. All clinical phenotypes will benefit from a better understanding of Glut1DS natural history throughout the life cycle and from improved guidelines facilitating early diagnosis and prompt treatment. Often, the presenting seizures are treated initially with antiseizure drugs before the cause of the epilepsy is ascertained and appropriate KDT are initiated. Initial drug treatment fails to treat the underlying metabolic disturbance during early brain development, contributing to the long-term disease burden. Impaired development of the brain microvasculature is one such complication of delayed Glut1DS treatment in the postnatal period. This international consensus statement should facilitate prompt diagnosis and guide best standard of care for Glut1DS throughout the life cycle.

8.
J Clin Invest ; 130(3): 1271-1287, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32039917

RESUMO

Paucity of the survival motor neuron (SMN) protein triggers the oft-fatal infantile-onset motor neuron disorder, spinal muscular atrophy (SMA). Augmenting the protein is one means of treating SMA and recently led to FDA approval of an intrathecally delivered SMN-enhancing oligonucleotide currently in use. Notwithstanding the advent of this and other therapies for SMA, it is unclear whether the paralysis associated with the disease derives solely from dysfunctional motor neurons that may be efficiently targeted by restricted delivery of SMN-enhancing agents to the nervous system, or stems from broader defects of the motor unit, arguing for systemic SMN repletion. We investigated the disease-contributing effects of low SMN in one relevant peripheral organ - skeletal muscle - by selectively depleting the protein in only this tissue. We found that muscle deprived of SMN was profoundly damaged. Although a disease phenotype was not immediately obvious, persistent low levels of the protein eventually resulted in muscle fiber defects, neuromuscular junction abnormalities, compromised motor performance, and premature death. Importantly, restoring SMN after the onset of muscle pathology reversed disease. Our results provide the most compelling evidence yet for a direct contributing role of muscle in SMA and argue that an optimal therapy for the disease must be designed to treat this aspect of the dysfunctional motor unit.


Assuntos
Neurônios Motores/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Neurônios Motores/patologia , Músculo Esquelético/patologia , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Proteína 1 de Sobrevivência do Neurônio Motor/genética
9.
Ann Clin Transl Neurol ; 6(9): 1923-1932, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31464092

RESUMO

Proper development and function of the mammalian brain is critically dependent on a steady supply of its chief energy source, glucose. Such supply is mediated by the glucose transporter 1 (Glut1) protein. Paucity of the protein stemming from mutations in the associated SLC2A1 gene deprives the brain of glucose and triggers the infantile-onset neurodevelopmental disorder, Glut1 deficiency syndrome (Glut1 DS). Considering the monogenic nature of Glut1 DS, the disease is relatively straightforward to model and thus study. Accordingly, Glut1 DS serves as a convenient paradigm to investigate the more general cellular and molecular consequences of brain energy failure. Here, we review how Glut1 DS models have informed the biology of a prototypical brain energy failure syndrome, how these models are facilitating the development of promising new treatments for the human disease, and how important insights might emerge from the study of Glut1 DS to illuminate the myriad conditions involving the Glut1 protein.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos/terapia , Dieta Cetogênica , Terapia Genética , Transportador de Glucose Tipo 1/genética , Proteínas de Transporte de Monossacarídeos/deficiência , Triglicerídeos/uso terapêutico , Encéfalo/metabolismo , Erros Inatos do Metabolismo dos Carboidratos/tratamento farmacológico , Erros Inatos do Metabolismo dos Carboidratos/genética , Humanos , Proteínas de Transporte de Monossacarídeos/genética , Mutação
10.
Elife ; 72018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30117805

RESUMO

Cholinergic dysfunction is strongly implicated in dystonia pathophysiology. Previously (Pappas et al., 2015;4:e08352), we reported that Dlx5/6-Cre mediated forebrain deletion of the DYT1 dystonia protein torsinA (Dlx-CKO) causes abnormal twisting and selective degeneration of dorsal striatal cholinergic interneurons (ChI) (Pappas et al., 2015). A central question raised by that work is whether the ChI loss is cell autonomous or requires torsinA loss from neurons synaptically connected to ChIs. Here, we addressed this question by using ChAT-Cre mice to conditionally delete torsinA from cholinergic neurons ('ChAT-CKO'). ChAT-CKO mice phenocopy the Dlx-CKO phenotype of selective dorsal striatal ChI loss and identify an essential requirement for torsinA in brainstem and spinal cholinergic neurons. ChAT-CKO mice are tremulous, weak, and exhibit trunk twisting and postural abnormalities. These findings are the first to demonstrate a cell autonomous requirement for torsinA in specific populations of cholinergic neurons, strengthening the connection between torsinA, cholinergic dysfunction and dystonia pathophysiology.


Assuntos
Corpo Estriado/fisiopatologia , Distonia/genética , Chaperonas Moleculares/genética , Sinapses/genética , Acetilcolina/genética , Acetilcolina/metabolismo , Animais , Colina O-Acetiltransferase/genética , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Distonia/metabolismo , Distonia/fisiopatologia , Humanos , Camundongos , Prosencéfalo/metabolismo , Prosencéfalo/fisiopatologia , Sinapses/fisiologia
11.
Neuron ; 97(5): 1001-1003, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29518354

RESUMO

Spinal muscular atrophy (SMA) is a common and oft-fatal pediatric neuromuscular disorder caused by insufficient SMN protein. Now, two clinical trials (Mendell et al., 2017; Finkel et al., 2017) demonstrate that restoring the protein is therapeutic, offering new treatment options and renewed hope to SMA patients.


Assuntos
Terapia Genética/métodos , Atrofias Musculares Espinais da Infância/genética , Atrofias Musculares Espinais da Infância/terapia , Animais , Terapia Genética/tendências , Humanos , Neurônios Motores/patologia , Neurônios Motores/fisiologia , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Atrofias Musculares Espinais da Infância/diagnóstico , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Resultado do Tratamento
12.
Future Neurol ; 13(3): 161-172, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31396020

RESUMO

Infantile-onset spinal muscular atrophy (SMA) is a prototypical disease in which to investigate selective neurodegenerative phenotypes. Caused by low levels of the ubiquitously expressed Survival Motor Neuron (SMN) protein, the disease mainly targets the spinal motor neurons. This selective phenotype remains largely unexplained, but has not hindered the development of SMN repletion as a means to a treatment. Here we chronicle recent advances in the area of SMA biology. We provide a brief background to the disease, highlight major advances that have shaped our current understanding of SMA, trace efforts to treat the condition, discuss the outcome of two promising new therapies and conclude by considering contemporary as well as new challenges stemming from recent successes within the field.

13.
Hum Mol Genet ; 26(22): 4406-4415, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28973165

RESUMO

Homozygous mutations in the aromatic l-amino acid decarboxylase (AADC) gene result in a severe depletion of its namesake protein, triggering a debilitating and often fatal form of infantile Parkinsonism known as AADC deficiency. AADC deficient patients fail to produce normal levels of the monoamine neurotransmitters dopamine and serotonin, and suffer a multi-systemic disorder characterized by movement abnormalities, developmental delay and autonomic dysfunction; an absolute loss of dopamine is generally considered incompatible with life. There is no optimal treatment for AADC deficiency and few truly good models in which to investigate disease mechanisms or develop and refine therapeutic strategies. In this study, we introduced a relatively frequently reported but mildly pathogenic S250F missense mutation into the murine Aadc gene. We show that mutants homozygous for the mutation are viable and express a stable but minimally active form of the AADC protein. Although the low enzymatic activity of the protein resulted in only modestly reduced concentrations of brain dopamine, serotonin levels were markedly diminished, and this perturbed behavior as well as autonomic function in mutant mice. Still, we found no evidence of morphologic abnormalities of the dopaminergic cells in mutant brains. The striatum as well as substantia nigra appeared normal and no loss of dopamine expressing cells in the latter was detected. We conclude that even minute levels of active AADC are sufficient to allow for substantial amounts of dopamine to be produced in model mice harboring the S250F mutation. Such mutants represent a novel, mild model of human AADC deficiency.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Descarboxilases de Aminoácido-L-Aromático/deficiência , Mutação de Sentido Incorreto , Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Animais , Descarboxilases de Aminoácido-L-Aromático/genética , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Feminino , Terapia Genética , Humanos , Levodopa/metabolismo , Masculino , Camundongos , Neostriado/metabolismo , Doença de Parkinson/enzimologia , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , Serotonina/metabolismo , Substância Negra/metabolismo
14.
Hum Mol Genet ; 26(13): 2377-2385, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28379354

RESUMO

Spinal muscular atrophy (SMA) is a common and often fatal neuromuscular disorder caused by low levels of the Survival Motor Neuron (SMN) protein. Amongst the earliest detectable consequences of SMN deficiency are profound defects of the neuromuscular junctions (NMJs). In model mice these synapses appear disorganized, fail to mature and are characterized by poorly arborized nerve terminals. Given one role of the SMN protein in orchestrating the assembly of spliceosomal snRNP particles and subsequently regulating the alternative splicing of pre-mRNAs, a plausible link between SMN function and the distal neuromuscular SMA phenotype is an incorrectly spliced transcript or transcripts involved in establishing or maintaining NMJ structure. In this study, we explore the effects of one such transcript-Z+Agrin-known to be a critical organizer of the NMJ. We confirm that low SMN protein reduces motor neuronal levels of Z+Agrin. Repletion of this isoform of Agrin in the motor neurons of SMA model mice increases muscle fiber size, enhances the post-synaptic NMJ area, reduces the abnormal accumulation of intermediate filaments in nerve terminals of the neuromuscular synapse and improves the innervation of muscles. While these effects are independent of changes in SMN levels or increases in motor neuron numbers they nevertheless have a significant effect on the overall disease phenotype, enhancing mean survival in severely affected SMA model mice by ∼40%. We conclude that Agrin is an important target of the SMN protein and that mitigating NMJ defects may be one strategy in treating human spinal muscular atrophy.


Assuntos
Agrina/genética , Junção Neuromuscular/metabolismo , Agrina/metabolismo , Processamento Alternativo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/genética , Proteínas do Tecido Nervoso/genética , Doenças Neuromusculares/genética , Doenças Neuromusculares/metabolismo , Junção Neuromuscular/genética , Isoformas de Proteínas/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Sinapses/metabolismo
15.
Nat Commun ; 8: 14152, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28106060

RESUMO

Haploinsufficiency of the SLC2A1 gene and paucity of its translated product, the glucose transporter-1 (Glut1) protein, disrupt brain function and cause the neurodevelopmental disorder, Glut1 deficiency syndrome (Glut1 DS). There is little to suggest how reduced Glut1 causes cognitive dysfunction and no optimal treatment for Glut1 DS. We used model mice to demonstrate that low Glut1 protein arrests cerebral angiogenesis, resulting in a profound diminution of the brain microvasculature without compromising the blood-brain barrier. Studies to define the temporal requirements for Glut1 reveal that pre-symptomatic, AAV9-mediated repletion of the protein averts brain microvasculature defects and prevents disease, whereas augmenting the protein late, during adulthood, is devoid of benefit. Still, treatment following symptom onset can be effective; Glut1 repletion in early-symptomatic mutants that have experienced sustained periods of low brain glucose nevertheless restores the cerebral microvasculature and ameliorates disease. Timely Glut1 repletion may thus constitute an effective treatment for Glut1 DS.


Assuntos
Encéfalo/irrigação sanguínea , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Microvasos/metabolismo , Proteínas de Transporte de Monossacarídeos/deficiência , Animais , Barreira Hematoencefálica/crescimento & desenvolvimento , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Erros Inatos do Metabolismo dos Carboidratos/genética , Erros Inatos do Metabolismo dos Carboidratos/fisiopatologia , Feminino , Glucose/metabolismo , Transportador de Glucose Tipo 1/genética , Humanos , Masculino , Camundongos , Microvasos/anormalidades , Microvasos/crescimento & desenvolvimento , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Neovascularização Fisiológica
16.
J Neuropathol Exp Neurol ; 74(1): 15-24, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25470343

RESUMO

Neuropathologic findings within the central and peripheral nervous systems in patients with spinal muscular atrophy type I (SMA-I) were examined in relation to genetic, clinical, and electrophysiologic features. Five infants representing the full clinical spectrum of SMA-I were examined clinically for compound motor action potential amplitude and SMN2 gene copy number; morphologic analyses of postmortem central nervous system, neuromuscular junction, and muscle tissue samples were performed and SMN protein was assessed in muscle samples. The 2 clinically most severely affected patients had a single copy of the SMN2 gene; in addition to anterior horn cells, dorsal root ganglia, and thalamus, neuronal degeneration in them was widespread in the cerebral cortex, basal ganglia, pigmented nuclei, brainstem, and cerebellum. Two typical SMA-I patients and a milder case each had 2 copies of the SMN2 gene and more restricted neuropathologic abnormalities. Maturation of acetylcholine receptor subunits was delayed and the neuromuscular junctions were abnormally formed in the SMA-I patients. Thus, the neuropathologic findings in human SMA-I are similar to many findings in animal models; factors other than SMN2 copy number modify disease severity. We present a pathophysiologic model for SMA-I as a protein deficiency disease affecting a neuronal network with variable clinical thresholds. Because new treatment strategies improve survival of infants with SMA-I, a better understanding of these factors will guide future treatments.


Assuntos
Sistema Nervoso Central/patologia , Músculo Esquelético/patologia , Nervos Periféricos/patologia , Atrofias Musculares Espinais da Infância/patologia , Atrofias Musculares Espinais da Infância/fisiopatologia , Criança , Gânglios Espinais/patologia , Humanos , Lactente , Recém-Nascido , Músculo Esquelético/metabolismo , Mutação/genética , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Neurônios/metabolismo , Neurônios/patologia , Receptores Nicotínicos/metabolismo , Medula Espinal/patologia , Atrofias Musculares Espinais da Infância/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
17.
Neurotherapeutics ; 11(4): 786-95, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24990202

RESUMO

Spinal muscular atrophy (SMA) is a frequently fatal neuromuscular disorder and the most common inherited cause of infant mortality. SMA results from reduced levels of the survival of motor neuron (SMN) protein. Although the disease was first described more than a century ago, a precise understanding of its genetics was not obtained until the SMA genes were cloned in 1995. This was followed in rapid succession by experiments that assigned a role to the SMN protein in the proper splicing of genes, novel animal models of the disease, and the eventual use of the models in the pre clinical development of rational therapies for SMA. These successes have led the scientific and clinical communities to the cusp of what are expected to be the first truly promising treatments for the human disorder. Yet, important questions remain, not the least of which is how SMN paucity triggers a predominantly neuromuscular phenotype. Here we review how our understanding of the disease has evolved since the SMA genes were identified. We begin with a brief description of the genetics of SMA and the proposed roles of the SMN protein. We follow with an examination of how the genetics of the disease was exploited to develop genetically faithful animal models, and highlight the insights gained from their analysis. We end with a discussion of ongoing debates, future challenges, and the most promising treatments to have emerged from our current knowledge of the disease.


Assuntos
Atrofia Muscular Espinal/genética , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Humanos , Camundongos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/terapia , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Pesquisa Translacional Biomédica
18.
Hum Mol Genet ; 23(23): 6318-31, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25055867

RESUMO

Reduced expression of SMN protein causes spinal muscular atrophy (SMA), a neurodegenerative disorder leading to motor neuron dysfunction and loss. However, the molecular mechanisms by which SMN regulates neuronal dysfunction are not fully understood. Here, we report that reduced SMN protein level alters miRNA expression and distribution in neurons. In particular, miR-183 levels are increased in neurites of SMN-deficient neurons. We demonstrate that miR-183 regulates translation of mTor via direct binding to its 3' UTR. Interestingly, local axonal translation of mTor is reduced in SMN-deficient neurons, and this can be recovered by miR-183 inhibition. Finally, inhibition of miR-183 expression in the spinal cord of an SMA mouse model prolongs survival and improves motor function of Smn-mutant mice. Together, these observations suggest that axonal miRNAs and the mTOR pathway are previously unidentified molecular mechanisms contributing to SMA pathology.


Assuntos
Axônios/metabolismo , MicroRNAs/metabolismo , Biossíntese de Proteínas , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Serina-Treonina Quinases TOR/biossíntese , Regiões 3' não Traduzidas , Animais , MicroRNAs/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Neurônios/metabolismo , Cultura Primária de Células , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Serina-Treonina Quinases TOR/genética
19.
Future Neurol ; 9(1): 49-65, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24648831

RESUMO

Of the numerous inherited diseases known to afflict the pediatric population, spinal muscular atrophy (SMA) is among the most common. It has an incidence of approximately one in 10,000 newborns and a carrier frequency of one in 50. Despite its relatively high incidence, SMA remains somewhat obscure among the many neurodegenerative diseases that affect humans. Nevertheless, the last two decades have witnessed remarkable progress in our understanding of the pathology, underlying biology and especially the molecular genetics of SMA. This has led to a genuine expectation within the scientific community that a robust treatment will be available to patients before the end of the decade. The progress made in our understanding of SMA and, therefore, towards a viable therapy for affected individuals is in large measure a consequence of the simple yet fascinating genetics of the disease. Nevertheless, important questions remain. Addressing these questions promises not only to accelerate the march towards a cure for SMA, but also to uncover novel therapies for related neurodegenerative disorders. This review discusses our current understanding of SMA, considers the challenges ahead, describes existing treatment options and highlights state-of-the-art research being conducted as a means to a better, safer and more effective treatment for the disease.

20.
J Clin Invest ; 124(2): 785-800, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24463453

RESUMO

Spinal muscular atrophy is a common motor neuron disease caused by low survival motoneuron (SMN), a key protein in the proper splicing of genes. Restoring the protein is therefore a promising therapeutic strategy. Implementation of this strategy, however, depends on defining the temporal requirements for SMN. Here, we used controlled knockdown of SMN in transgenic mice to determine the precise postnatal stage requirements for this protein. Reducing SMN in neonatal mice resulted in a classic SMA-like phenotype. Unexpectedly, depletion of SMN in adults had relatively little effect. Insensitivity to low SMN emerged abruptly at postnatal day 17, which coincided with establishment of the fully mature neuromuscular junction (NMJ). Mature animals depleted of SMN eventually exhibited evidence of selective neuromuscular pathology that was made worse by traumatic injury. The ability to regenerate the mature NMJ in aged or injured SMN-depleted mice was grossly impaired, a likely consequence of the inability to meet the surge in demand for motoneuronal SMN that was seen in controls. Our results demonstrate that relative maturity of the NMJ determines the temporal requirement for the SMN protein. These observations suggest that the use of potent but potentially deleterious SMN-enhancing agents could be tapered in human patients once the neuromuscular system matures and reintroduced as needed to enhance SMN for remodeling aged or injured NMJs.


Assuntos
Junção Neuromuscular/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Envelhecimento , Alelos , Animais , Feminino , Técnicas de Silenciamento de Genes , Genótipo , Homozigoto , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Destreza Motora , Músculo Esquelético/patologia , Fenótipo , Sinapses , Fatores de Tempo , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...