Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biochim Biophys Acta Biomembr ; 1863(9): 183550, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33417967

RESUMO

Arachidonic acid (AA) is a fatty acid involved in the modulation of several ion channels. Previously, we reported that AA activates the high conductance Ca2+- and voltage-dependent K+ channel (BK) in vascular smooth muscle depending on the expression of the auxiliary ß1 subunit. Here, using the patch-clamp technique on BK channel co-expressed with ß1 subunit in a heterologous cell expression system, we analyzed whether AA modifies the three functional modules involved in the channel gating: the voltage sensor domain (VSD), the pore domain (PD), and the intracellular calcium sensor domain (CSD). We present evidence that AA activates BK channel in a direct way, inducing VSD stabilization on its active configuration observed as a significant left shift in the Q-V curve obtained from gating currents recordings. Moreover, AA facilitates the channel opening transitions when VSD are at rest, and the CSD are unoccupied. Furthermore, the activation was independent of the intracellular Ca2+ concentration and reduced when the BK channel was co-expressed with the Y74A mutant of the ß1 subunit. These results allow us to present new insigths in the mechanism by which AA modulates BK channels co-expressed with its auxiliary ß1 subunit.


Assuntos
Ácido Araquidônico/farmacologia , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Regulação Alostérica/efeitos dos fármacos , Ácido Araquidônico/química , Células HEK293 , Humanos
2.
Acta Pharmacol Sin ; 39(3): 371-381, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29188803

RESUMO

Thiazide-like diuretics are the most commonly used drugs to treat arterial hypertension, with their efficacy being linked to their chronic vasodilatory effect. Previous studies suggest that activation of the large conductance voltage- and Ca2+-dependent K+ (BK) channel (Slo 1, MaxiK channel) is responsible for the thiazide-induced vasodilatory effect. But the direct electrophysiological evidence supporting this claim is lacking. BK channels can be associated with one small accessory ß-subunit (ß1-ß4) that confers specific biophysical and pharmacological characteristics to the current phenotype. The ß1-subunit is primarily expressed in smooth muscle cells (SMCs). In this study we investigated the effect of hydrochlorothiazide (HCTZ) on BK channel activity in native SMCs from human umbilical artery (HUASMCs) and HEK293T cells expressing the BK channel (with and without the ß1-subunit). Bath application of HCTZ (10 µmol/L) significantly augmented the BK current in HUASMCs when recorded using the whole-cell configurations, but it did not affect the unitary conductance and open probability of the BK channel in HUASMCs evaluated in the inside-out configuration, suggesting an indirect mechanism requiring cell integrity. In HEK293T cells expressing BK channels, HCTZ-augmented BK channel activity was only observed when the ß1-subunit was co-expressed, being concentration-dependent with an EC50 of 28.4 µmol/L, whereas membrane potential did not influence the concentration relationship. Moreover, HCTZ did not affect the BK channel current in HEK293T cells evaluated in the inside-out configuration, but significantly increases the open probability in the cell-attached configuration. Our data demonstrate that a ß1-subunit-dependent mechanism that requires SMC integrity leads to HCTZ-induced BK channel activation.


Assuntos
Hidroclorotiazida/farmacologia , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/fisiologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Células Cultivadas , Humanos , Potenciais da Membrana/efeitos dos fármacos
3.
Pflugers Arch ; 466(9): 1779-92, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24375290

RESUMO

Arachidonic acid (AA) is a polyunsaturated fatty acid involved in a complex network of cell signaling. It is well known that this fatty acid can directly modulate several cellular target structures, among them, ion channels. We explored the effects of AA on high conductance Ca(2+)- and voltage-dependent K(+) channel (BKCa) in vascular smooth muscle cells (VSMCs) where the presence of ß1-subunit was functionally demonstrated by lithocholic acid activation. Using patch-clamp technique, we show at the single channel level that 10 µM AA increases the open probability (Po) of BKCa channels tenfold, mainly by a reduction of closed dwell times. AA also induces a left-shift in Po versus voltage curves without modifying their steepness. Furthermore, AA accelerates the kinetics of the voltage channel activation by a fourfold reduction in latencies to first channel opening. When AA was tested on BKCa channel expressed in HEK cells with or without the ß1-subunit, activation only occurs in presence of the modulatory subunit. These results contribute to highlight the molecular mechanism of AA-dependent BKCa activation. We conclude that AA itself selectively activates the ß1-associated BKCa channel, destabilizing its closed state probably by interacting with the ß1-subunit, without modifying the channel voltage sensitivity. Since BKCa channels physiologically contribute to regulation of VSMCs contractility and blood pressure, we used the whole-cell configuration to show that AA is able to activate these channels, inducing significant cell hyperpolarization that can lead to VSMCs relaxation.


Assuntos
Ácido Araquidônico/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Ácido Araquidônico/farmacologia , Células HEK293 , Humanos , Relaxamento Muscular/efeitos dos fármacos , Relaxamento Muscular/fisiologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Técnicas de Patch-Clamp , Subunidades Proteicas/metabolismo , Transfecção
4.
Reprod Sci ; 21(4): 432-41, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24084522

RESUMO

Through their control of cell membrane potential, potassium (K(+)) channels are among the best known regulators of vascular tone. This article discusses the expression and function of K(+) channels in human umbilical artery smooth muscle cells (HUASMCs). We review the bibliographic reports and also present single-channel data recorded in freshly isolated cells. Electrophysiological properties of big conductance, voltage- and Ca(2+)-sensitive K(+) channel and voltage-dependent K(+) channels are clearly established in this vessel, where they are involved in contractile state regulation. Their role in the maintenance of membrane potential is an important control mechanism in the determination of the vessel diameter. Additionally, small conductance Ca(2+)-sensitive K(+) channels, 2-pore domains K(+) channels and inward rectifier K(+) channels also appear to be present in HUASMCs, while intermediate conductance Ca(2+)-sensitive K(+) channels and ATP-sensitive K(+) channels could not be identified. In both cases, additional investigation is necessary to reach conclusive evidence of their expression and/or functional role in HUASMCs. Finally, we discuss the role of K(+) channels in pregnancy-related pathologies like gestational diabetes and preeclampsia.


Assuntos
Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Canais de Potássio/metabolismo , Potássio/metabolismo , Vasoconstrição , Diabetes Gestacional/metabolismo , Diabetes Gestacional/fisiopatologia , Feminino , Humanos , Potenciais da Membrana , Músculo Liso Vascular/fisiopatologia , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/fisiopatologia , Gravidez , Transdução de Sinais , Artérias Umbilicais/metabolismo , Artérias Umbilicais/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...