Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Immunohorizons ; 6(11): 768-778, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36445361

RESUMO

Juvenile idiopathic arthritis (JIA) is an inflammatory rheumatic disorder. Polymorphonuclear neutrophils (PMNs) are present in JIA synovial fluid (SF), but with variable frequency. SF PMNs in JIA were previously shown to display high exocytic but low phagocytic and immunoregulatory activities. To further assess whether the degree of SF neutrophilia associated with altered immune responses in JIA, we collected SF and blood from 16 adolescent JIA patients. SF and blood leukocytes were analyzed by flow cytometry. SF and plasma were used for immune mediator quantification and metabolomics. Healthy donor blood T cells were cultured in SF to evaluate its immunoregulatory activities. PMN and T cell frequencies were bimodal in JIA SF, delineating PMN high/T cell low (PMNHigh) and PMN low/T cell high (PMNLow) samples. Proinflammatory mediators were increased in SF compared with plasma across patients, and pro- and anti-inflammatory mediators were further elevated in PMNHigh SF. Compared to blood, SF PMNs showed increased exocytosis and programmed death-1/programmed death ligand-1 expression, and SF PMNs and monocytes/macrophages had increased surface-bound arginase-1. SPADE analysis revealed SF monocyte/macrophage subpopulations coexpressing programmed death-1 and programmed death ligand-1, with higher expression in PMNHigh SF. Healthy donor T cells showed reduced coreceptor expression when stimulated in PMNHigh versus PMNLow SF. However, amino acid metabolites related to the arginase-1 and IDO-1 pathways did not differ between the two groups. Hence, PMN predominance in the SF of a subset of JIA patients is associated with elevated immune mediator concentration and may alter SF monocyte/macrophage phenotype and T cell activation, without altering immunoregulatory amino acids.


Assuntos
Artrite Juvenil , Líquido Sinovial , Humanos , Arginase , Leucócitos , Neutrófilos
3.
Pediatr Pulmonol ; 57(9): 2189-2198, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35637404

RESUMO

BACKGROUND: In this pilot study, we investigated whether induced sputum (IS) could serve as a viable alternative to bronchoalveolar lavage (BAL) and yield robust inflammatory biomarkers in toddlers with cystic fibrosis (CF) featuring minimal structural lung disease. METHODS: We collected IS, BAL (right middle lobe and lingula), and blood, and performed chest computed tomography (CT) scans from 2-year-olds with CF (N = 11), all within a single visit. Inflammatory biomarkers included 20 soluble immune mediators and neutrophil elastase (NE), as well as frequency and phenotype of T cells, monocytes/macrophages, and neutrophils. RESULTS: At the molecular level, nine mediators showed similar levels in IS and BAL (CXCL1, CXCL8, IL-1α, IL-1RA, IL-6, CCL2, CXCL10, M-CSF, VEGF-A), four were higher in IS than in BAL (CXCL5, IL-1ß, CXCL11, TNFSF10), and two were present in IS, but undetectable in BAL (IL-10, IFN-γ). Meanwhile, soluble NE had lower activity in IS than in BAL. At the cellular level, T-cell frequency was lower in IS than in BAL. Monocytes/macrophages were dominant in IS and BAL with similar frequencies, but differing expression of CD16 (lower in IS), CD115, and surface-associated NE (higher in IS). Neutrophil frequency and phenotype did not differ between IS and BAL. Finally, neutrophil frequency in IS correlated positively with air trapping. CONCLUSIONS: IS collected from 2-year-olds with CF yields biomarkers of early airway inflammation with good agreement with BAL, notably with regard to molecular and cellular outcomes related to neutrophils and monocytes/macrophages.


Assuntos
Fibrose Cística , Escarro , Biomarcadores , Lavagem Broncoalveolar , Líquido da Lavagem Broncoalveolar , Humanos , Neutrófilos , Projetos Piloto
4.
Cell Rep Med ; 2(4): 100239, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33948572

RESUMO

Neutrophils are often considered terminally differentiated and poised for bacterial killing. In chronic diseases such as cystic fibrosis (CF), an unexplained paradox pits massive neutrophil presence against prolonged bacterial infections. Here, we show that neutrophils recruited to CF airways in vivo and in an in vitro transmigration model display rapid and broad transcriptional firing, leading to an upregulation of anabolic genes and a downregulation of antimicrobial genes. Newly transcribed RNAs are mirrored by the appearance of corresponding proteins, confirming active translation in these cells. Treatment by the RNA polymerase II and III inhibitor α-amanitin restores the expression of key antimicrobial genes and increases the bactericidal capacity of CF airway neutrophils in vitro and in short-term sputum cultures ex vivo. Broadly, our findings show that neutrophil plasticity is regulated at the site of inflammation via RNA and protein synthesis, leading to adaptations that affect their canonical functions (i.e., bacterial clearance).


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Neutrófilos/metabolismo , Sistema Respiratório/microbiologia , Fibrose Cística/genética , Fibrose Cística/microbiologia , Armadilhas Extracelulares/microbiologia , Humanos , Neutrófilos/microbiologia , Pseudomonas aeruginosa/patogenicidade , Escarro/metabolismo , Escarro/microbiologia
5.
Int J Mol Sci ; 22(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802410

RESUMO

Cystic fibrosis (CF) lung disease is dominated by the recruitment of myeloid cells (neutrophils and monocytes) from the blood which fail to clear the lung of colonizing microbes. In prior in vitro studies, we showed that blood neutrophils migrated through the well-differentiated lung epithelium into the CF airway fluid supernatant (ASN) mimic the dysfunction of CF airway neutrophils in vivo, including decreased bactericidal activity despite an increased metabolism. Here, we hypothesized that, in a similar manner to neutrophils, blood monocytes undergo significant adaptations upon recruitment to CFASN. To test this hypothesis, primary human blood monocytes were transmigrated in our in vitro model into the ASN from healthy control (HC) or CF subjects to mimic in vivo recruitment to normal or CF airways, respectively. Surface phenotype, metabolic and bacterial killing activities, and transcriptomic profile by RNA sequencing were quantified post-transmigration. Unlike neutrophils, monocytes were not metabolically activated, nor did they show broad differences in activation and scavenger receptor expression upon recruitment to the CFASN compared to HCASN. However, monocytes recruited to CFASN showed decreased bactericidal activity. RNASeq analysis showed strong effects of transmigration on monocyte RNA profile, with differences between CFASN and HCASN conditions, notably in immune signaling, including lower expression in the former of the antimicrobial factor ISG15, defensin-like chemokine CXCL11, and nitric oxide-producing enzyme NOS3. While monocytes undergo qualitatively different adaptations from those seen in neutrophils upon recruitment to the CF airway microenvironment, their bactericidal activity is also dysregulated, which could explain why they also fail to protect CF airways from infection.


Assuntos
Adaptação Fisiológica/genética , Microambiente Celular/genética , Fibrose Cística/genética , Pulmão/patologia , Monócitos/patologia , Transcrição Gênica/genética , Adulto , Células Cultivadas , Feminino , Humanos , Masculino , Neutrófilos/patologia , Transdução de Sinais/fisiologia
6.
Comput Biol Chem ; 85: 107211, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32004971

RESUMO

As part of the type I IFN signaling, the 2'-5'- oligoadenylate synthetase (OAS) proteins have been involved in the progression of several non-viral diseases. Notably, OAS has been correlated with immune-modulatory functions that promote chronic inflammatory conditions, autoimmune disorders, cancer, and infectious diseases. In spite of this, OAS enzymes have been ignored as drug targets, and to date, there are no reports of compounds that can inhibit their activity. In this study, we have used homology modeling and virtual high-throughput screening to identify potential inhibitors of the human proteins OAS1, OAS2, and OAS3. Altogether, we have found 37 molecules that could exert a competitive inhibition in the ATP binding sites of OAS proteins, independently of the activation state of the enzyme. This latter characteristic, which might be crucial for a versatile inhibitor, was observed in compounds interacting with the residues Asp75, Asp77, Gln229, and Tyr230 in OAS1, and their equivalents in OAS2 and OAS3. Although there was little correlation between specific chemical fragments and their interactions, intermolecular contacts with OAS catalytic triad and other critical amino acids were mainly promoted by heterocycles with π electrons and hydrogen bond acceptors. In conclusion, this study provides a potential set of OAS inhibitors as well as valuable information for their design, development, and optimization.


Assuntos
2',5'-Oligoadenilato Sintetase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , 2',5'-Oligoadenilato Sintetase/metabolismo , Biologia Computacional , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...