Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 4: 2556, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24077533

RESUMO

Small-angle neutron scattering (SANS) is the most significant neutron technique in terms of impact on science and engineering. However, the basic design of SANS facilities has not changed since the technique's inception about 40 years ago, as all SANS instruments, save a few, are still designed as pinhole cameras. Here we demonstrate a novel concept for a SANS instrument based on axisymmetric focusing mirrors. We build and test a small prototype, which shows a performance comparable to that of conventional large SANS facilities. By using a detector with 48-µm pixels, we build the most compact SANS instrument in the world. This work, together with the recent demonstration that such mirrors could increase the signal rate at least 50-fold, for large samples, while improving resolution, paves the way to novel SANS instruments, thus affecting a broad community of scientists and engineers.

2.
Proc Natl Acad Sci U S A ; 104(23): 9656-60, 2007 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-17525147

RESUMO

We report the results of x-ray-scattering studies of individual helical ribbons formed in multicomponent solutions of cholesterol solubilized by various surfactants. The solutions were chemically defined lipid concentrate (CDLC) and model bile. In these and many analogous multicomponent surfactant-cholesterol solutions, helical ribbons of two well defined pitch angles, namely 11 degrees and 54 degrees, are formed. We have suggested previously that this remarkable stability results from an underlying crystalline structure of the sterol ribbon strips. Using a synchrotron x-ray source, we have indeed observed Bragg reflections from individual ribbons having 11 degrees pitch angle. We have been able to deduce the parameters of the unit cell. The crystal structure of these ribbons is similar to that of cholesterol monohydrate, with the important difference that the length of the unit cell perpendicular to the cholesterol layers is tripled. We discuss possible origins for this triplication as well as the connection between the crystalline structure and the geometrical form of the helical ribbons.


Assuntos
Bile/química , Colesterol/química , Estrutura Molecular , Tensoativos/química , Síncrotrons , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA