Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 31(13): 2137-2154, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35075486

RESUMO

Retinal diseases exhibit extensive genetic heterogeneity and complex etiology with varying onset and severity. Mutations in over 200 genes can lead to photoreceptor dysfunction and/or cell death in retinal neurodegeneration. To deduce molecular pathways that initiate and/or drive cell death, we adopted a temporal multiomics approach and examined molecular and cellular events in newborn and developing photoreceptors before the onset of degeneration in a widely-used Pde6brd1/rd1 (rd1) mouse, a model of autosomal recessive retinitis pigmentosa caused by PDE6B mutations. Transcriptome profiling of neonatal and developing rods from the rd1 retina revealed early downregulation of genes associated with anabolic pathways and energy metabolism. Quantitative proteomics of rd1 retina showed early changes in calcium signaling and oxidative phosphorylation, with specific partial bypass of complex I electron transfer, which precede the onset of cell death. Concurrently, we detected alterations in central carbon metabolism, including dysregulation of components associated with glycolysis, pentose phosphate and purine biosynthesis. Ex vivo assays of oxygen consumption and transmission electron microscopy validated early and progressive mitochondrial stress and abnormalities in mitochondrial structure and function of rd1 rods. These data uncover mitochondrial overactivation and related metabolic alterations as determinants of early pathology and implicate aberrant calcium signaling as an initiator of higher mitochondrial stress. Our studies thus provide a mechanistic framework with mitochondrial damage and metabolic disruptions as early drivers of photoreceptor cell death in retinal degeneration.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Animais , Morte Celular/genética , Modelos Animais de Doenças , Camundongos , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinose Pigmentar/patologia
2.
mSystems ; 6(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468705

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes are conserved genetic elements in many prokaryotes, including Mycobacterium tuberculosis, the causative agent of tuberculosis. Although knowledge of CRISPR locus variability has been utilized in M. tuberculosis strain genotyping, its evolutionary path in Mycobacteriaceae is not well understood. In this study, we have performed a comparative analysis of 141 mycobacterial genomes and identified the exclusive presence of the CRISPR-Cas type III-A system in M. tuberculosis complex (MTBC). Our global phylogenetic analysis of CRISPR repeats and Cas10 proteins offers evidence of horizontal gene transfer (HGT) of the CRISPR-Cas module in the last common ancestor of MTBC and Mycobacterium canettii from a Streptococcus-like environmental bacterium. Additionally, our results show that the variation of CRISPR-Cas organization in M. tuberculosis lineages, especially in the Beijing sublineage of lineage 2, is due to the transposition of insertion sequence IS6110 The direct repeat (DR) region of the CRISPR-Cas locus acts as a hot spot for IS6110 insertion. We show in M. tuberculosis H37Rv that the repeat at the 5' end of CRISPR1 of the forward strand is an atypical repeat made up partly of IS-terminal inverted repeat and partly CRISPR DR. By tracing an undetectable spacer sequence in the DR region, the two CRISPR loci could theoretically be joined to reconstruct the ancestral single CRISPR-Cas locus organization, as seen in M. canettii This study retracing the evolutionary events of HGT and IS6110-driven genomic deletions helps us to better understand the strain-specific variations in M. tuberculosis lineages.IMPORTANCE Comparative genomic analysis of prokaryotes has led to a better understanding of the biology of several pathogenic microorganisms. One such clinically important pathogen is M. tuberculosis, the leading cause of bacterial infection worldwide. Recent evidence on the functionality of the CRISPR-Cas system in M. tuberculosis has brought back focus on these conserved genetic elements, present in many prokaryotes. Our study advances understanding of mycobacterial CRISPR-Cas origin and its diversity among the different species. We provide phylogenetic evidence of acquisition of CRISPR-Cas type III-A in the last common ancestor shared between MTBC and M. canettii, by HGT-mediated events. The most likely source of HGT was an environmental Firmicutes bacterium. Genomic mapping of the CRISPR loci showed the IS6110 transposition-driven variations in M. tuberculosis strains. Thus, this study offers insights into events related to the evolution of CRISPR-Cas in M. tuberculosis lineages.

3.
Infect Immun ; 86(6)2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29632245

RESUMO

Mycobacterium tuberculosis, a successful human pathogen, utilizes multiple carbon sources from the host but adapts to a fatty-acid-rich environment in vivo We sought to delineate the physiologic response of M. tuberculosis to a lipid-rich environment by using differentiated adipocytes as a model system. Global transcriptome profiling based on RNA sequencing was performed for bacilli from infected adipocytes and preadipocytes. Genes involved in de novo fatty acid synthesis were downregulated, while those predicted to be involved in triglyceride biosynthesis were upregulated, in bacilli isolated from adipocytes, indicating reliance on host-derived fatty acids. Transcription factor network analysis indicated suppression of IdeR-regulated genes, suggesting decreased iron uptake by M. tuberculosis in the adipocyte model. This suppression of iron uptake coincided with higher ferritin and iron levels in adipocytes than in preadipocytes. In accord with the role of iron in mediating oxidative stress, we observed upregulation of genes involved in mitigating oxidative stress in M. tuberculosis isolated from adipocytes. We provide evidence that oleic acid, a major host-derived fatty acid, helps reduce the bacterial cytoplasm, thereby providing a safe haven for an M. tuberculosis mutant that is sensitive to iron-mediated oxidative stress. Via an independent mechanism, host ferritin is also able to rescue the growth of this mutant. Our work highlights the inherent synergy between macronutrients and micronutrients of the host environment that converge to provide resilience to the pathogen. This complex synergy afforded by the adipocyte model of infection will aid in the identification of genes required by M. tuberculosis in a caseous host environment.


Assuntos
Adipócitos/metabolismo , Adipócitos/microbiologia , Ferro/metabolismo , Mycobacterium tuberculosis/fisiologia , Células 3T3-L1 , Animais , Humanos , Metabolismo dos Lipídeos , Camundongos , Células RAW 264.7
4.
Proteomics ; 16(2): 226-40, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26773550

RESUMO

Sustainable innovations in sequencing technologies have resulted in a torrent of microbial genome sequencing projects. However, the prokaryotic genomes sequenced so far are unequally distributed along their phylogenetic tree; few phyla contain the majority, the rest only a few representatives. Accurate genome annotation lags far behind genome sequencing. While automated computational prediction, aided by comparative genomics, remains a popular choice for genome annotation, substantial fraction of these annotations are erroneous. Proteogenomics utilizes protein level experimental observations to annotate protein coding genes on a genome wide scale. Benefits of proteogenomics include discovery and correction of gene annotations regardless of their phylogenetic conservation. This not only allows detection of common, conserved proteins but also the discovery of protein products of rare genes that may be horizontally transferred or taxonomy specific. Chances of encountering such genes are more in rare phyla that comprise a small number of complete genome sequences. We collated all bacterial and archaeal proteogenomic studies carried out to date and reviewed them in the context of genome sequencing projects. Here, we present a comprehensive list of microbial proteogenomic studies, their taxonomic distribution, and also urge for targeted proteogenomics of underexplored taxa to build an extensive reference of protein coding genes.


Assuntos
Proteínas Arqueais/genética , Proteínas de Bactérias/genética , Proteoma/genética , Proteômica , Transferência Genética Horizontal , Genoma Arqueal , Genoma Bacteriano , Humanos , Anotação de Sequência Molecular , Fases de Leitura Aberta , Filogenia
5.
Genome Biol Evol ; 6(12): 3171-81, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25398783

RESUMO

Admixture mapping has been enormously resourceful in identifying genetic variations linked to phenotypes, adaptation, and diseases. In this study through analysis of copy number variable regions (CNVRs), we report extensive restructuring in the genomes of the recently admixed African-Indian population (OG-W-IP) that inhabits a highly saline environment in Western India. The study included subjects from OG-W-IP (OG), five different Indian and three HapMap populations that were genotyped using Affymetrix version 6.0 arrays. Copy number variations (CNVs) detected using Birdsuite were used to define CNVRs. Population structure with respect to CNVRs was delineated using random forest approach. OG genomes have a surprising excess of CNVs in comparison to other studied populations. Individual ancestry proportions computed using STRUCTURE also reveals a unique genetic component in OGs. Population structure analysis with CNV genotypes indicates OG to be distant from both the African and Indian ancestral populations. Interestingly, it shows genetic proximity with respect to CNVs to only one Indian population IE-W-LP4, which also happens to reside in the same geographical region. We also observe a significant enrichment of molecular processes related to ion binding and receptor activity in genes encompassing OG-specific CNVRs. Our results suggest that retention of CNVRs from ancestral natives and de novo acquisition of CNVRs could accelerate the process of adaptation especially in an extreme environment. Additionally, this population would be enormously useful for dissecting genes and delineating the involvement of CNVs in salt adaptation.


Assuntos
Adaptação Fisiológica , População Negra/genética , Variações do Número de Cópias de DNA , Genoma Humano , População/genética , Humanos , Índia
6.
Proteomics ; 14(23-24): 2790-4, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25158906

RESUMO

Proteogenomics involves the use of MS to refine annotation of protein-coding genes and discover genes in a genome. We carried out comprehensive proteogenomic analysis of Methylobacterium extorquens AM1 (ME-AM1) from publicly available proteomics data with a motive to improve annotation for methylotrophs; organisms capable of surviving in reduced carbon compounds such as methanol. Besides identifying 2482(50%) proteins, 29 new genes were discovered and 66 annotated gene models were revised in ME-AM1 genome. One such novel gene is identified with 75 peptides, lacks homolog in other methylobacteria but has glycosyl transferase and lipopolysaccharide biosynthesis protein domains, indicating its potential role in outer membrane synthesis. Many novel genes are present only in ME-AM1 among methylobacteria. Distant homologs of these genes in unrelated taxonomic classes and low GC-content of few genes suggest lateral gene transfer as a potential mode of their origin. Annotations of methylotrophy related genes were also improved by the discovery of a short gene in methylotrophy gene island and redefining a gene important for pyrroquinoline quinone synthesis, essential for methylotrophy. The combined use of proteogenomics and rigorous bioinformatics analysis greatly enhanced the annotation of protein-coding genes in model methylotroph ME-AM1 genome.


Assuntos
Proteínas de Bactérias/metabolismo , Biologia Computacional/métodos , Genoma Bacteriano/genética , Methylobacterium extorquens/metabolismo , Proteínas de Bactérias/genética , Methylobacterium extorquens/genética
7.
PLoS One ; 8(7): e69985, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922883

RESUMO

The bacterial chromosomal DNA is folded into a compact structure called as 'nucleoid' so that the bacterial genome can be accommodated inside the cell. The shape and size of the nucleoid are determined by several factors including DNA supercoiling, macromolecular crowding and nucleoid associated proteins (NAPs). NAPs bind to different sites of the genome in sequence specific or non-sequence specific manner and play an important role in DNA compaction as well as regulation. Until recently, few NAPs have been discovered in mycobacteria owing to poor sequence similarities with other histone-like proteins of eubacteria. Several putative NAPs have now been identified in Mycobacteria on the basis of enriched basic residues or histone-like "PAKK" motifs. Here, we investigate mycobacterial Integration Host Factor (mIHF) for its architectural roles as a NAP using atomic force microscopy and DNA compaction experiments. We demonstrate that mIHF binds DNA in a non-sequence specific manner and compacts it by a DNA bending mechanism. AFM experiments also indicate a dual architectural role for mIHF in DNA compaction as well as relaxation. These results suggest a convergent evolution in the mechanism of E. coli and mycobacterial IHF in DNA compaction.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Fatores Hospedeiros de Integração/metabolismo , Mycobacterium tuberculosis/metabolismo , Tuberculose/microbiologia , Proteínas de Bactérias/genética , Clonagem Molecular , DNA Bacteriano/genética , Genoma Bacteriano , Fatores Hospedeiros de Integração/genética , Mycobacterium tuberculosis/genética , Fases de Leitura Aberta , Ligação Proteica
8.
PLoS One ; 7(7): e39808, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22808064

RESUMO

A decade since the availability of Mycobacterium tuberculosis (Mtb) genome sequence, no promising drug has seen the light of the day. This not only indicates the challenges in discovering new drugs but also suggests a gap in our current understanding of Mtb biology. We attempt to bridge this gap by carrying out extensive re-annotation and constructing a systems level protein interaction map of Mtb with an objective of finding novel drug target candidates. Towards this, we synergized crowd sourcing and social networking methods through an initiative 'Connect to Decode' (C2D) to generate the first and largest manually curated interactome of Mtb termed 'interactome pathway' (IPW), encompassing a total of 1434 proteins connected through 2575 functional relationships. Interactions leading to gene regulation, signal transduction, metabolism, structural complex formation have been catalogued. In the process, we have functionally annotated 87% of the Mtb genome in context of gene products. We further combine IPW with STRING based network to report central proteins, which may be assessed as potential drug targets for development of drugs with least possible side effects. The fact that five of the 17 predicted drug targets are already experimentally validated either genetically or biochemically lends credence to our unique approach.


Assuntos
Proteínas de Bactérias/metabolismo , Crowdsourcing , Sistemas de Liberação de Medicamentos/métodos , Genoma Bacteriano , Macrófagos/microbiologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/genética , Sistemas de Liberação de Medicamentos/estatística & dados numéricos , Redes Reguladoras de Genes , Genômica , Interações Hospedeiro-Patógeno , Humanos , Mycobacterium tuberculosis/patogenicidade , Mapeamento de Interação de Proteínas , Proteoma , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...