Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(8): e0289766, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37566619

RESUMO

Elucidation of genome size (GS), genetic and phenotypic variation is the fundamental aspect of crop improvement programs. Mulberry is a cross-pollinated, highly heterozygous tree eudicot, and comprised of huge ploidy variation with great adaptability across the world. However, because of inadequate information on GS, ploidy-associated traits, as well as the correlation between genetic and phenotypic variation hinder the further improvement of mulberry. In this present research, a core set of 157 germplasm accessions belonging to eight accepted species of Morus including promising functional varieties were chosen to represent the genetic spectrum from the whole germplasm collection. To estimate the GS, accessions were subjected to flow cytometry (FCM) analysis and the result suggested that four different ploidies (2n = 2x, 3x, 4x, and 6x) with GS ranging from 0.72±0.005pg (S-30) to 2.89±0.015pg (M. serrata), accounting~4.01 fold difference. The predicted polyploidy was further confirmed with metaphase chromosome count. In addition, the genetic variation was estimated by selecting a representative morphologically, diverse population of 82 accessions comprised of all ploidy variations using simple sequence repeats (SSR). The estimated average Polymorphism Information Content (PIC) and expected heterozygosity showed high levels of genetic diversity. Additionally, three populations were identified by the model-based population structure (k = 3) with a moderate level of correlation between the populations and different species of mulberry, which imply the effect of genetic variation instead of ploidy on trait plasticity that could be a consequence of the high level of heterozygosity imposed by natural cross-pollination. Further, the correlation between ploidies, especially diploid and triploid with selected phenotypic traits was identified, however, consistency could not be defined with higher ploidy levels (>3x). Moreover, incite gained here can serve as a platform for future omics approaches to the improvement of mulberry traits.


Assuntos
Morus , Morus/genética , Árvores , Tamanho do Genoma , Ploidias , Polimorfismo Genético , Variação Biológica da População , Variação Genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-37010689

RESUMO

Rising need for various renewable and non-renewable energy resources became vital for developing countries to meet their rapid economic growth under an exponentially growing population scenario. The primary goal of COP-26 for climate change mitigation is to reduce greenhouse gas (GHG) emissions from different sectors. Because of their significant contribution to global warming, GHG emissions from hydroelectric reservoirs have been a contentious topic of discussion since the pre-industrial age. However, the exact methodology for quantification of GHG and important parameters affecting emission rate is difficult due to limited equipment facilities, techniques for GHG measurement, uncertainties in GHG emissions rate, insufficient GHG database, and significant spatio-temporal variability of emission in the global reservoirs. This paper discusses the current scenario of GHG emissions from renewable energy, with a focus on hydroelectric reservoirs, methodological know-how, the interrelationship between parameters impacting GHG emissions, and mitigation techniques. Aside from that, significant methods and approaches for predicting GHG emissions from hydroelectric reservoirs, accounting for GHG emissions, life cycle assessment, uncertainty sources, and knowledge gaps, have been thoroughly discussed.

3.
Environ Sci Pollut Res Int ; 30(24): 65848-65864, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37093388

RESUMO

The present study evaluates the impact of the COVID-19 lockdown on the water quality of a tropical lake (East Kolkata Wetland or EKW, India) along with seasonal change using Landsat 8 and 9 images of the Google Earth Engine (GEE) cloud computing platform. The research focuses on detecting, monitoring, and predicting water quality in the EKW region using eight parameters-normalized suspended material index (NSMI), suspended particular matter (SPM), total phosphorus (TP), electrical conductivity (EC), chlorophyll-α, floating algae index (FAI), turbidity, Secchi disk depth (SDD), and two water quality indices such as Carlson tropic state index (CTSI) and entropy­weighted water quality index (EWQI). The results demonstrate that SPM, turbidity, EC, TP, and SDD improved while the FAI and chlorophyll-α increased during the lockdown period due to the stagnation of water as well as a reduction in industrial and anthropogenic pollution. Moreover, the prediction of EWQI using an artificial neural network indicates that the overall water quality will improve more if the lockdown period is sustained for another 3 years. The outcomes of the study will help the stakeholders develop effective regulations and strategies for the timely restoration of lake water quality.


Assuntos
COVID-19 , Qualidade da Água , Humanos , Lagos , Monitoramento Ambiental/métodos , Controle de Doenças Transmissíveis , Clorofila/análise , Redes Neurais de Computação , Fósforo/análise
5.
Inorg Chem ; 62(8): 3485-3497, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36780226

RESUMO

Photoinduced electricity and proton conductivity led fuel cells have emerged, inter alia, as highly promising systems for unconventional energy harvesting. Notwithstanding their individual presence with widely acclaimed results, an integrating system with mutually inclusive manifestation of both features has hitherto not been reported in the literature. To achieve this objective, our approach was to design a ligand system incorporating prerequisite features of both systems, like extended conjugation instigating photophysical activity and functional groups facilitating ionic conduction. As such, we report herein the design, synthesis, and characterization of a pyridyl-pyrazole-based silver compound that exhibits an excellent photocurrent generation and very high proton conductivity. The X-ray single-crystal structure of the Ag complex fully supports our notion, showing extensive π-π conjugated aromatic rings with a protruding free sulfonic group, facing toward solvent-filled channels with numerous supramolecular interactions. The nanoscopic silver metallogel induces semiconductive features in the system which ultimately result in photoresponse behavior in terms of photocurrent generation with an whopping photocurrent gain (Ion/Ioff) of 21.2. To complete the idea of an integrated system, the proton conductivity values were also measured for both gel and crystalline states, while the former state yields a better result. The maximum proton conductivity value turns out to be 1.03 × 10-2 S cm-1 at 70 °C, which is higher than or comparable to those of well-known systems in the literature for proton conductivity.

6.
Heliyon ; 9(1): e12973, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36711267

RESUMO

Germplasm is a long-term resource management mission and investment for civilization. An estimated ∼7.4 million accessions are held in 1750 plant germplasm centres around the world; yet, only 2% of these assets have been utilized as plant genetic resources (PGRs). According to recent studies, the current food yield trajectory will be insufficient to feed the world's population in 2050. Additionally, possible negative effects in terms of crop failure because of climate change are already being experienced across the world. Therefore, it is necessary to reconciliation of research advancement and innovation of practices for further exploration of the potential of crop germplasm especially for the complex traits associated with yield such as water- and nitrogen use efficiency. In this review, we tried to address current challenges, research gaps, physiological and molecular aspects of two broad spectrum complex traits such as water- and nitrogen-use efficiency, and advanced integrated strategies that could provide a platform for combined stress management for climate-smart crop development. Additionally, recent development in technologies that are directly related to germplasm characterization was highlighted for further molecular utilization towards the development of elite varieties.

7.
Bio Protoc ; 13(17)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38273895

RESUMO

Studies on chromosomal status are a fundamental aspect of plant cytogenetics and breeding because changes in number, size, and shape of chromosomes determine plant physiology/performance. Despite its significance, the classical cytogenetic study is now frequently avoided because of its tedious job. In general, root meristems are used to study the mitotic chromosome number, even though the use of root tips was restricted because of sample availability, processing, and lack of standard protocols. Moreover, to date, a protocol using shoot tips to estimate chromosome number has not yet been achieved for tree species' germplasm with a large number of accessions, like mulberry (Morusspp.). Here, we provide a step-by-step, economically feasible protocol for the pretreatment, fixation, enzymatic treatment, staining, and squashing of meristematic shoot tips. The protocol is validated with worldwide collections of 200 core set accessions with a higher level of ploidy variation, namely diploid (2n = 2x = 28), triploid (2n = 3x = 42), tetraploid (2n = 4x = 56), hexaploid (2n = 6x = 84), and decosaploid (2n = 22x = 308) belonging to nine species of Morus spp. Furthermore, accession from each ploidy group was subjected to flow cytometry (FCM) analysis for confirmation. The present protocol will help to optimize metaphase plate preparation and estimation of chromosome number using meristematic shoot tips of tree species regardless of their sex, location, and/or resources.

8.
BMC Genomics ; 23(1): 480, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768782

RESUMO

BACKGROUND: Lectin receptor-like kinases (Lec-RLKs), a subfamily of RLKs, have been demonstrated to play an important role in signal transduction from cell wall to the plasma membrane during biotic stresses. Lec-RLKs include legume lectin-like proteins (LLPs), an important group of apoplastic proteins that are expressed in regenerating cell walls and play a role in immune-related responses. However, it is unclear whether LLPs have a function in abiotic stress mitigation and related signaling pathways. Therefore, in this study, we examined the possible role of LLPs in Arabidopsis thaliana (AtLLPs) under various abiotic stresses. RESULTS: The study was initiated by analyzing the chromosomal localization, gene structure, protein motif, peptide sequence, phylogeny, evolutionary divergence, and sub-cellular localization of AtLLPs. Furthermore, the expression profiling of these AtLLPs was performed using publicly accessible microarray datasets under various abiotic stresses, which indicated that all AtLLPs were differently expressed in both root and shoot tissues in response to abiotic stresses. The cis-regulatory elements (CREs) analysis in 500 bp promoter sequences of AtLLPs suggested the presence of multiple important CREs implicated for regulating abiotic stress responses, which was further supported by expressional correlation analysis between AtLLPs and their CREs cognate transcription factors (TFs). qRT-PCR analysis of these AtLLPs after 2, 6, and 12 h of cold, high light, oxidative (MV), UV-B, wound, and ozone stress revealed that all AtLLPs displayed differential expression patterns in most of the tested stresses, supporting their roles in abiotic stress response and signaling again. Out of these AtLLPs, AT1g53070 and AT5g03350 appeared to be important players. Furthermore, the mutant line of AT5g03350 exhibited higher levels of ROS than wild type plants till 12 h of exposure to high light, MV, UV-B, and wound, whereas its overexpression line exhibited comparatively lower levels of ROS, indicating a positive role of this gene in abiotic stress response in A. thaliana. CONCLUSIONS: This study provides basic insights in the involvement of two important representative AtLLPs, AT1g53070 and AT5g03350, in abiotic stress response. However, further research is needed to determine the specific molecular mechanism of these AtLLPs in abiotic stress mitigation and related signaling pathways in A. thaliana.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fabaceae , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fabaceae/genética , Fabaceae/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Lectinas/genética , Filogenia , Proteínas de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética
9.
Inorg Chem ; 61(4): 2141-2153, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35049278

RESUMO

The present work is part of our ongoing quest for developing functional inorganic complexes using unorthodox pyridyl-pyrazolyl-based ligands. Accordingly, we report herein the synthesis, characterization, and luminescence and magnetic properties of four 3d-4f mixed-metal complexes with a general core of Ln2Zn6 (Ln = Dy, Gd, Tb, and Eu). In stark contrast to the popular wisdom of using a compartmental ligand with separate islands of hard and soft coordinating sites for selective coordination, we have vindicated our approach of using a ligand with overcrowded N-coordinating sites that show equal efficiency with both 4f and 3d metals toward multinuclear cage-cluster formation. The encouraging red and green photolumiscent features of noncytotoxic Eu2Zn6 and Tb2Zn6 complexes along with their existence in nanoscale dimension have been exploited with live-cell confocal microscopy imaging of human breast adenocarcinoma (MCF7) cells. The magnetic features of the Dy2Zn6 complex confirm the single-molecule-magnet behavior with befitting frequency- and temperature-dependent out-of-phase signals along with an Ueff value of ∼5 K and a relaxation time of 8.52 × 10-6 s. The Gd2Zn6 complex, on the other hand, shows cryogenic magnetic refrigeration with an entropy change of 11.25 J kg-1 K-1 at a magnetic field of 7 T and at 2 K. Another important aspect of this work reflects the excellent agreement between the experimental results and theoretical calculations. The theoretical studies carried out using the broken-symmetry density functional theory, ORCA suite of programs, and MOLCAS calculations using the complete-active-space self-consistent-field method show an excellent synergism with the experimentally measured magnetic and spectroscopic data.

10.
Dalton Trans ; 51(4): 1617-1633, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34994757

RESUMO

Besides iron, ironically neodymium (Nd) is the most ubiquitously used metal for magnetic purposes, even among the lanthanides, when it comes to the field of molecular magnetism, yet it ranks among the least studied metals. However, strong apathy towards this magnetic lanthanide means that vital information will be missed, which is required for the advancement of the subject. Herein, we have successfully demonstrated the usefulness of a hexanuclear neodymium complex as a magnetic material, and also in electronic device fabrication. A {NdIII6} cage with an aesthetically pleasing butterfly topology was synthesized using a rather non-conventional N-rich pyridyl-pyrazolyl based ligand. The cage shows single molecule magnet (SMM) properties, with an effective energy barrier, Ueff, value of 3.4 K and relaxation time, τ0, of 3.1 × 10-4 s, originating from an unusual occurrence of metal centres with different coordination environments. Furthermore, magnetic studies reveal significant cyrogenic magnetic cooling, with a magnetic entropy change of 8.28 J kg-1 K-1 at 5 T and 3 K. To the best of our knowledge, the titular compound is the only example of a Nd-complex that exhibits concomitant magnetocaloric effect (MCE) and SMM properties. Complete active space self-consistent field (CASSCF) calculations were carried out to shed light on the origin of the magnetic anisotropy and magnetic relaxation of the compound. The same uniqueness is also true for the first electronic investigation carried out on the Nd complex. The maiden electronic device fabricated using the Nd complex shows an interesting intertwining of electronic and optical features, which contribute towards its improved photosensitized optoelectronic data.

11.
BMC Genomics ; 22(1): 817, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772363

RESUMO

BACKGROUND: S-domain receptor-like kinases (SD-RLKs) are an important and multi-gene subfamily of plant receptor-like/pelle kinases (RLKs), which are known to play a significant role in the development and immune responses of Arabidopsis thaliana. The conserved cysteine residues in the extracellular domain of SD-RLKs make them interesting candidates for sensing reactive oxygen species (ROS), assisting oxidative stress mitigation and associated signaling pathways during abiotic stresses. However, how closely SD-RLKs are interrelated to abiotic stress mitigation and signaling remains unknown in A. thaliana. RESULTS: This study was initiated by examining the chromosomal localization, phylogeny, sequence and differential expression analyses of 37 SD-RLK genes using publicly accessible microarray datasets under cold, osmotic stress, genotoxic stress, drought, salt, UV-B, heat and wounding. Out of 37 SD-RLKs, 12 genes displayed differential expression patterns in both the root and the shoot tissues. Promoter structure analysis suggested that these 12 SD-RLK genes harbour several potential cis-regulatory elements (CREs), which are involved in regulating multiple abiotic stress responses. Based on these observations, we investigated the expression patterns of 12 selected SD-RLKs under ozone, wounding, oxidative (methyl viologen), UV-B, cold, and light stress at different time points using semi-qRT-PCR. Of these 12 SD-SRKs, the genes At1g61360, At1g61460, At1g61380, and At4g27300 emerged as potential candidates that maintain their expression in most of the stress treatments till exposure for 12 h. Expression patterns of these four genes were further verified under similar stress treatments using qRT-PCR. The expression analysis indicated that the gene At1g61360, At1g61380, and At1g61460 were mostly up-regulated, whereas the expression of At4g27300 either up- or down-regulated in these conditions. CONCLUSIONS: To summarize, the computational analysis and differential transcript accumulation of SD-RLKs under various abiotic stresses suggested their association with abiotic stress tolerance and related signaling in A. thaliana. We believe that a further detailed study will decipher the specific role of these representative SD-RLKs in abiotic stress mitigation vis-a-vis signaling pathways in A. thaliana.


Assuntos
Arabidopsis , Arabidopsis/genética , Simulação por Computador , Secas , Regulação da Expressão Gênica de Plantas , Filogenia , Cloreto de Sódio , Estresse Fisiológico/genética
12.
Chem Commun (Camb) ; 57(85): 11177-11180, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34617535

RESUMO

We report herein three air, thermal and solvent stable interlocked triacontanuclear giant nanocages, generated using a node and spacer concept. Interestingly, the crystal structures of the cages are not only nano-dimensional but also exist in the nano-dimension range, which was corroborated with microscopic images. The combination of microscopic and crystallographic data, in effect, led us to a unique advantageous situation of generating nanomaterials with hard-to-come-by structural information at the molecular level.

13.
Plant J ; 108(6): 1565-1584, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34628690

RESUMO

Glutamine synthetase (GS; E.C.6.3.1.2) is a key enzyme in higher plants with two isozymes, cytosolic GS1 and plastidic GS2, and involves in the assimilation and recycling of NH4+ ions and maintenance of complex traits such as crop nitrogen-use efficiency and yield. Our present understanding of crop nitrogen-use efficiency and its correlation with the functional role of the GS family genes is inadequate, which delays harnessing the benefit of this key enzyme in crop improvement. In this report, we performed a comprehensive investigation on the phylogenetic relationship, structural properties, complex multilevel gene regulation, and expression patterns of the GS genes to enrich present understanding about the enzyme. Our Gene Ontology and protein-protein interactions analysis revealed the functional aspects of GS isozymes in stress mitigation, aging, nucleotide biosynthesis/transport, DNA repair and response to metals. The insight gained here contributes to the future research strategies in developing climate-smart crops for global sustainability.


Assuntos
Glutamato-Amônia Ligase/química , Glutamato-Amônia Ligase/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Processamento Alternativo , Motivos de Aminoácidos , Biologia Computacional/métodos , Mineração de Dados , Embriófitas/enzimologia , Embriófitas/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Glutamato-Amônia Ligase/genética , Modelos Moleculares , Filogenia , Proteínas de Plantas/genética , Conformação Proteica , Processamento de Proteína Pós-Traducional
14.
Chemosphere ; 284: 131325, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34216922

RESUMO

Industrialization and modernization of agricultural systems contaminated lithosphere, hydrosphere, and biosphere of the Earth. Sustainable remediation of contamination is essential for environmental sustainability. Myco-remediation is proposed to be a green, economical, and efficient technology over conventional remediation technologies to combat escalating pollution problems at a global scale. Fungi can perform remediation of pollutants through several mechanisms like biosorption, precipitation, biotransformation, and sequestration. Myco-remediation significantly removes or degrades metal metals, persistent organic pollutants, and other emerging pollutants. The current review highlights the species-specific remediation potential, influencing factors, genetic and molecular control mechanism, applicability merits to enhance the bioremediation efficiency. Structure and composition of fungal cell wall is crucial for immobilization of toxic pollutants and a subtle change on fungal cell wall structure may significantly affect the immobilization efficiency. The utilization protocol and applicability of enzyme engineering and myco-nanotechnology to enhance the bioremediation efficiency of any potential fungus was proposed. It is advocated that the association of hyper-accumulator plants with plant growth-promoting fungi could help in an effective cleanup strategy for the alleviation of persistent soil pollutants. The functions, activity, and regulation of fungal enzymes in myco-remediation practices required further research to enhance the myco-remediation potential. Study of the biotransformation mechanisms and risk assessment of the products formed are required to minimize environmental pollution. Recent advancements in molecular "Omic techniques"and biotechnological tools can further upgrade myco-remediation efficiency in polluted soils and water.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Fungos , Plantas , Solo , Poluentes do Solo/análise
15.
Chemosphere ; 275: 129996, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33647680

RESUMO

Nickel (Ni) has been a subject of interest for environmental, physiological, biological scientists due to its dual effect (toxicity and essentiality) in terrestrial biota. In general, the safer limit of Ni is 1.5 µg g-1 in plants and 75-150 µg g-1 in soil. Litreature review indicates that Ni concentrations have been estimated up to 26 g kg-1 in terrestrial, and 0.2 mg L-1 in aquatic resources. In case of vegetables and fruits, mean Ni content has been reported in the range of 0.08-0.26 and 0.03-0.16 mg kg-1. Considering, Ni toxicity and its potential health hazards, there is an urgent need to find out the suitable remedial approaches. Plant vascular (>80%) and cortical (<20%) tissues are the major sequestration site (cation exchange) of absorbed Ni. Deciphering molecular mechanisms in transgenic plants have immense potential for enhancing Ni phytoremediation and microbial remediation efficiency. Further, it has been suggested that integrated bioremediation approaches have a potential futuristic path for Ni decontamination in natural resources. This systematic review provides insight on Ni effects on terrestrial biota including human and further explores its transportation, bioaccumulation through food chain contamination, human health hazards, and possible Ni remediation approaches.


Assuntos
Níquel , Poluentes do Solo , Biodegradação Ambiental , Biota , Humanos , Níquel/análise , Níquel/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
16.
Dalton Trans ; 50(10): 3593-3609, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33624673

RESUMO

In this contribution, we report the synthesis, characterization and luminescence-magnetic properties of Ln-clusters (Ln = Gd3+, Eu3+ and Tb3+) using a new pyridine-pyrazole functionalized ligand fitted with a chromophoric phenanthroline backbone. The unorthodox N-rich ligand forms isostructural trinuclear lanthanide complexes with a topology that closely resembles two interdigitating hairpins. The clusters crystallize in chiral space groups and also exhibit chirality for bulk samples, which were further confirmed using solid state CD spectra. Magnetic studies on the complexes reveal their interesting features while the Gd cluster shows a significant cryogenic magnetic cooling behaviour with a moderately high magnetic entropy change of -23.42 J kg-1 K-1 at 7 T and 2 K. On the other hand, Eu and Tb complexes exhibit interesting fluorescence properties. The compounds were subsequently used as fluorescent probes for the imaging of human breast adenocarcinoma (MCF7) cells. Live cell confocal microscopy images show that the complexes penetrate beyond the usual cytoplasm region and can be useful in imaging the nucleus region of MCF7 cells.


Assuntos
Complexos de Coordenação/química , Elementos da Série dos Lantanídeos/química , Imagem Óptica , Fenantrolinas/química , Complexos de Coordenação/síntese química , Humanos , Ligantes , Células MCF-7 , Fenômenos Magnéticos , Estrutura Molecular , Pirazóis , Piridinas
17.
RSC Adv ; 11(17): 10094-10109, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35423527

RESUMO

We report herein the development of a new pyridine-pyrazole based bis-bidentate asymmetric chemosensor that shows excellent turn-on chelation-enhanced Al3+-responsive fluorescence. The presence of two 'hard' phenolic hydroxyl groups plays a pivotal role in switching-on the sensing through coordination to the 'hard' Al3+ ion, while the mechanism can be interpreted by the chelation-enhanced fluorescence (CHEF) process. The X-ray single structure show a planar conjugated structure of the ligand, which was further stabilized by extensive H-bonding and π-π stacking. The photophysical studies related to the sensing behavior of the titular ligand toward aluminum was investigated in detail using various spectroscopic techniques like UV-Vis, photoluminescence, fluorescence and time-correlated single-photon count (TCSPC) and time-resolved NMR. The spectroscopic methods also confirm the selective detection of Al3+ ion in the presence of other metal ions. The theoretical calculations using Density Functional Theory (DFT) and the Time Dependent Density Functional Theory (TD-DFT) provide further insight on the mechanistic aspects of the turn-on sensing behavior including the electronic spectra of both the ligand and the complex. Interestingly, the as-synthesized H2DPC-Al complex can also be utilized as a fluorescence-based sensor for various nitroaromatics including picric acid, for which an INHIBIT logic gate can also be constructed. The as synthesized complex was subsequently used as a fluorescent probe for imaging of human breast adenocarcinoma (MCF7) cells using live cell confocal microscopic techniques.

18.
Chemosphere ; 268: 128855, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33199107

RESUMO

Cadmium (Cd) is a harmful heavy metal that can cause potent environmental and health hazards at different trophic levels through food chain. Cd is relatively non-biodegradable and persists for a long time in the environment. Considering the potential toxicity and non-biodegradability of Cd in the environment as well as its health hazards, this is an urgent issue of international concern that needs to be addressed by implicating suitable remedial approaches. The current article specifically attempts to review the different biological approaches for remediation of Cd contamination in natural resources. Further, bioremediation mechanisms of Cd by microbes such as bacteria, fungi, algae are comprehensively discussed. Studies indicate that heavy metal resistant microbes can be used as suitable biosorbents for the removal of Cd (up to 90%) in the natural resources. Soil-to-plant transfer coefficient (TC) of Cd ranges from 3.9 to 3340 depending on the availability of metal to plants and also on the type of plant species. The potential phytoremediation strategies for Cd removal and the key factors influencing bioremediation process are also emphasized. Studies on molecular mechanisms of transgenic plants for Cd bioremediation show immense potential for enhancing Cd phytoremediation efficiency. Thus, it is suggested that nano-technological based integrated bioremediation approaches could be a potential futuristic path for Cd decontamination in natural resources. This review would be highly useful for the biologists, chemists, biotechnologists and environmentalists to understand the long-term impacts of Cd on ecology and human health so that potential remedial measures could be taken in advance.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Humanos , Recursos Naturais , Solo , Poluentes do Solo/análise
19.
Dalton Trans ; 49(46): 17005-17016, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33191411

RESUMO

The present work reports the fabrication of anion-induced electrical devices with Zn(ii) metal-organic frameworks. The essence of our electronic device fabrication is to utilize the anionic species entrapped inside of the three-dimensional network of the MOFs for charge transportation. The idea is to generate MOFs as a host-guest system with encapsulated anions or anion-solvent clusters as guests and a cationic yet insulating three-dimensional framework as the host. Accordingly, we have synthesized two Zn(ii) MOFs using a neutral bispyrazole-based ligand, which results in a cationic chassis with substantial void space and porous channels inside the network. For both MOFs, the porous channels are occupied by infinitely hydrogen bonded networks of anions and anion-solvent clusters. This provides an excellent platform for anionic species-induced charge transportation and improved electrical conductivity. Indeed, the impedance spectroscopy data and current density-voltage (J-V) characteristics of the fabricated electrical devices further vindicate our idea. The current-voltage measurements clearly indicate the usefulness of modified host-guest-type MOFs for electronic device fabrication with corroborating conductivity values of 8.71 × 10-5 S m-1 and 5.79 × 10-4 S m-1 for compound 1 and compound 2, respectively.

20.
Dalton Trans ; 49(39): 13704-13716, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-32996512

RESUMO

In this contribution we have carried out a systematic magnetostructural investigation to establish a robust one-to-one correlation between the quasi-orthogonal bridging mode of a pyrazolate ring and ferromagnetic coupling. Generating a complex with an elusive quasi-orthogonal pyrazolate bridging is a challenging task but would ineluctably result in a ferromagnetic exchange pathway. Notwithstanding the rarity, we report herein a series of bis-pyrazolato copper complexes. We have successfully exploited a so-called hypothetical-deductive model on a particular set of ligand systems that forced the pyrazolate moiety to adopt an unusual bridging mode with the M-Npz-Npz-M torsion angles in the range from 49.7° to 72.8°. The corroborating variable temperature direct current (DC) magnetic susceptibility data unequivocally confirm the ferromagnetic coupling for the complexes with the torsion angles greater than 71.37°. Furthermore, the experimental results are in excellent agreement with theoretical calculations. Based on density functional theory (DFT) calculations, again a one-to-one correspondence is made between the ligand structure and magnetic behaviour. The diradical character (y0) of the complexes is correlated with the extent of bonding interactions between the Cu centers and hence, their ferromagnetic or antiferromagnetic nature. The broken symmetry (BS) calculations on the magnetically active molecular orbitals indicate the essential magnetic behaviour of the complexes, while the EPR g-tensor calculations confirm that dx2-y2 is the magnetic orbital.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...