Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 55(11): 1876-1891, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37857935

RESUMO

Noncoding variants of presumed regulatory function contribute to the heritability of neuropsychiatric disease. A total of 2,221 noncoding variants connected to risk for ten neuropsychiatric disorders, including autism spectrum disorder, attention deficit hyperactivity disorder, bipolar disorder, borderline personality disorder, major depression, generalized anxiety disorder, panic disorder, post-traumatic stress disorder, obsessive-compulsive disorder and schizophrenia, were studied in developing human neural cells. Integrating epigenomic and transcriptomic data with massively parallel reporter assays identified differentially-active single-nucleotide variants (daSNVs) in specific neural cell types. Expression-gene mapping, network analyses and chromatin looping nominated candidate disease-relevant target genes modulated by these daSNVs. Follow-up integration of daSNV gene editing with clinical cohort analyses suggested that magnesium transport dysfunction may increase neuropsychiatric disease risk and indicated that common genetic pathomechanisms may mediate specific symptoms that are shared across multiple neuropsychiatric diseases.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Transtorno Bipolar , Transtorno Depressivo Maior , Transtorno Obsessivo-Compulsivo , Esquizofrenia , Humanos , Transtorno do Espectro Autista/genética , Transtorno Bipolar/genética , Esquizofrenia/genética , Transtorno Obsessivo-Compulsivo/genética , Transtorno Obsessivo-Compulsivo/psicologia , Transtorno Depressivo Maior/genética , Transtorno do Deficit de Atenção com Hiperatividade/genética
2.
Nat Methods ; 19(8): 959-968, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35927480

RESUMO

DNA-protein interactions mediate physiologic gene regulation and may be altered by DNA variants linked to polygenic disease. To enhance the speed and signal-to-noise ratio (SNR) in the identification and quantification of proteins associated with specific DNA sequences in living cells, we developed proximal biotinylation by episomal recruitment (PROBER). PROBER uses high-copy episomes to amplify SNR, and proximity proteomics (BioID) to identify the transcription factors and additional gene regulators associated with short DNA sequences of interest. PROBER quantified both constitutive and inducible association of transcription factors and corresponding chromatin regulators to target DNA sequences and binding quantitative trait loci due to single-nucleotide variants. PROBER identified alterations in regulator associations due to cancer hotspot mutations in the hTERT promoter, indicating that these mutations increase promoter association with specific gene activators. PROBER provides an approach to rapidly identify proteins associated with specific DNA sequences and their variants in living cells.


Assuntos
Cromatina , DNA , Biotinilação , Cromatina/genética , DNA/genética , DNA/metabolismo , Plasmídeos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Nat Methods ; 15(3): 207-212, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29400715

RESUMO

RNA-protein interactions play numerous roles in cellular function and disease. Here we describe RNA-protein interaction detection (RaPID), which uses proximity-dependent protein labeling, based on the BirA* biotin ligase, to rapidly identify the proteins that bind RNA sequences of interest in living cells. RaPID displays utility in multiple applications, including in evaluating protein binding to mutant RNA motifs in human genetic disorders, in uncovering potential post-transcriptional networks in breast cancer, and in discovering essential host proteins that interact with Zika virus RNA. To improve the BirA*-labeling component of RaPID, moreover, a new mutant BirA* was engineered from Bacillus subtilis, termed BASU, that enables >1,000-fold faster kinetics and >30-fold increased signal-to-noise ratio over the prior standard Escherichia coli BirA*, thereby enabling direct study of RNA-protein interactions in living cells on a timescale as short as 1 min.


Assuntos
Biotina/química , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Proteínas Virais/metabolismo , Zika virus/metabolismo , Bacillus subtilis/metabolismo , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Células HEK293 , Humanos , Neurônios/citologia , Neurônios/metabolismo , RNA/química , RNA/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Zika virus/genética
4.
J Bacteriol ; 199(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28507243

RESUMO

The Bacillus subtilis trpEDCFBA operon is regulated by a transcription attenuation mechanism in which tryptophan-activated TRAP binds to the nascent transcript and blocks the formation of an antiterminator structure such that the formation of an overlapping intrinsic terminator causes termination in the 5' untranslated region (5' UTR). In the absence of bound TRAP, the antiterminator forms and transcription continues into the trp genes. RNA polymerase pauses at positions U107 and U144 in the 5' UTR. The general transcription elongation factors NusA and NusG stimulate pausing at both positions. NusG-stimulated pausing at U144 requires sequence-specific contacts with a T tract in the nontemplate DNA (ntDNA) strand within the paused transcription bubble. Pausing at U144 participates in a trpE translation repression mechanism. Since U107 just precedes the critical overlap between the antiterminator and terminator structures, pausing at this position is thought to participate in attenuation. Here we carried out in vitro pausing and termination experiments to identify components of the U107 pause signal and to determine whether pausing affects the termination efficiency in the 5' UTR. We determined that the U107 and U144 pause signals are organized in a modular fashion containing distinct RNA hairpin, U-tract, and T-tract components. NusA-stimulated pausing was affected by hairpin strength and the U-tract sequence, whereas NusG-stimulated pausing was affected by hairpin strength and the T-tract sequence. We also determined that pausing at U107 results in increased TRAP-dependent termination in the 5' UTR, implying that NusA- and NusG-stimulated pausing participates in the trp operon attenuation mechanism by providing additional time for TRAP binding.IMPORTANCE The expression of several bacterial operons is controlled by regulated termination in the 5' untranslated region (5' UTR). Transcription attenuation is defined as situations in which the binding of a regulatory molecule promotes transcription termination in the 5' UTR, with the default being transcription readthrough into the downstream genes. RNA polymerase pausing is thought to participate in several attenuation mechanisms by synchronizing the position of RNA polymerase with RNA folding and/or regulatory factor binding, although this has only been shown in a few instances. We found that NusA- and NusG-stimulated pausing participates in the attenuation mechanism controlling the expression of the Bacillus subtilis trp operon by increasing the TRAP-dependent termination efficiency. The pause signal is organized in a modular fashion containing RNA hairpin, U-tract, and T-tract components.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Óperon/fisiologia , Bacillus subtilis/genética , Proteínas de Bactérias/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
5.
Nat Microbiol ; 1: 15007, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-27571753

RESUMO

Intrinsic transcription terminators consist of an RNA hairpin followed by a U-rich tract, and these signals can trigger termination without the involvement of additional factors. Although NusA is known to stimulate intrinsic termination in vitro, the in vivo targets and global impact of NusA are not known because it is essential for viability. Using genome-wide 3' end-mapping on an engineered Bacillus subtilis NusA depletion strain, we show that weak suboptimal terminators are the principle NusA substrates. Moreover, a subclass of weak non-canonical terminators was identified that completely depend on NusA for effective termination. NusA-dependent terminators tend to have weak hairpins and/or distal U-tract interruptions, supporting a model in which NusA is directly involved in the termination mechanism. Depletion of NusA altered global gene expression directly and indirectly via readthrough of suboptimal terminators. Readthrough of NusA-dependent terminators caused misregulation of genes involved in essential cellular functions, especially DNA replication and metabolism. We further show that nusA is autoregulated by a transcription attenuation mechanism that does not rely on antiterminator structures. Instead, NusA-stimulated termination in its 5' UTR dictates the extent of transcription into the operon, thereby ensuring tight control of cellular NusA levels.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Terminação da Transcrição Genética , Proteínas de Bactérias/genética , Genes Bacterianos , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...