Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 25(27): 275701, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24960447

RESUMO

Atom probe tomography studies on highly Mg-doped homoepitaxial GaN (0001) layers with concentrations of 5 × 10(19) cm(-3) and 1 × 10(20) cm(-3) were performed. Mg cluster formation was observed only in the higher doped sample whereas in the lower doped sample the Mg distribution was homogeneous. CL measurements have shown that the emission normally attributed to stacking faults was only present in the lower doped layers (with Mg concentration of ∼5 × 10(19) cm(-3) or less), but absent in the higher doped layer, where Mg clusters were detected. Mg clusters are proposed to produce a screening effect, thereby destroying the exciton binding on the SFs and thus rendering them optically inactive.

2.
Nanotechnology ; 24(21): 215202, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23619281

RESUMO

We report the fabrication of quantum wells in ZnO nanowires (NWs) by a crystal phase engineering approach. Basal plane stacking faults (BSFs) in the wurtzite structure can be considered as a minimal segment of zinc blende. Due to the existing band offsets at the wurtzite (WZ)/zinc blende (ZB) material interface, incorporation of a high density of BSFs into ZnO NWs results in type II band alignment. Thus, the BSF structure acts as a quantum well for electrons and a potential barrier for holes in the valence band. We have studied the photoluminescence properties of ZnO NWs containing high concentrations of BSFs in comparison to high-quality ZnO NWs of pure wurtzite structure. It is revealed that BSFs form quantum wells in WZ ZnO nanowires, providing an additional luminescence peak at 3.329 eV at 4 K. The luminescence mechanism is explained as an indirect exciton transition due to the recombination of electrons in the QW conduction band with holes localized near the BSF. The binding energy of electrons is found to be around 100 meV, while the excitons are localized with the binding energy of holes of ∼5 meV, due to the coupling of BSFs, which form QW-like structures.


Assuntos
Cristalização/métodos , Medições Luminescentes/métodos , Nanofios/química , Nanofios/ultraestrutura , Óxido de Zinco/química , Transferência de Energia , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Transição de Fase , Teoria Quântica , Propriedades de Superfície
3.
Phys Rev Lett ; 102(23): 235501, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19658946

RESUMO

The optical signatures of Mg-related acceptors in GaN have been revisited in samples specifically grown on bulk GaN templates, to avoid strain broadening of the optical spectra. Bound-exciton spectra can be studied in these samples for Mg concentrations up to [Mg] approximately 2 x 10(19) cm(-3). Contrary to previous work it is found that instabilities in the photoluminescence spectra are not due to unstable shallow donors, but to unstable Mg-related acceptors. Our data show that there are two Mg-related acceptors simultaneously present: the regular (stable) substitutional Mg acceptor, and a complex acceptor which is unstable in p-GaN.

4.
Phys Rev Lett ; 100(8): 087402, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18352663

RESUMO

We report on a strong delay in light propagation through bulk GaN, detected by time-of-flight spectroscopy. The delay increases resonantly as the photon energy approaches the energy of a neutral-donor bound exciton (BX), resulting in a velocity of light as low as 2100 km/s. In the close vicinity of the BX resonance, the transmitted light contains both ballistic and diffusive components. This phenomenon is quantitatively explained in terms of optical dispersion in a medium where resonant light scattering by the BX resonance takes place in addition to the polariton propagation.

5.
Phys Rev Lett ; 92(11): 117407, 2004 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-15089170

RESUMO

Mie resonances due to scattering or absorption of light in InN-containing clusters of metallic In may have been erroneously interpreted as the infrared band gap absorption in tens of papers. Here we show by direct thermally detected optical absorption measurements that the true band gap of InN is markedly wider than the currently accepted 0.7 eV. Microcathodoluminescence studies complemented by the imaging of metallic In have shown that bright infrared emission at 0.7-0.8 eV arises in a close vicinity of In inclusions and is likely associated with surface states at the metal/InN interfaces.

15.
Phys Rev Lett ; 75(21): 3963, 1995 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-10059776
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA