Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Psychiatry ; 224(2): 66-73, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37993980

RESUMO

BACKGROUND: Late-life depression has been associated with volume changes of the hippocampus. However, little is known about its association with specific hippocampal subfields over time. AIMS: We investigated whether hippocampal subfield volumes were associated with prevalence, course and incidence of depressive symptoms. METHOD: We extracted 12 hippocampal subfield volumes per hemisphere with FreeSurfer v6.0 using T1-weighted and fluid-attenuated inversion recovery 3T magnetic resonance images. Depressive symptoms were assessed at baseline and annually over 7 years of follow-up (9-item Patient Health Questionnaire). We used negative binominal, logistic, and Cox regression analyses, corrected for multiple comparisons, and adjusted for demographic, cardiovascular and lifestyle factors. RESULTS: A total of n = 4174 participants were included (mean age 60.0 years, s.d. = 8.6, 51.8% female). Larger right hippocampal fissure volume was associated with prevalent depressive symptoms (odds ratio (OR) = 1.26, 95% CI 1.08-1.48). Larger bilateral hippocampal fissure (OR = 1.37-1.40, 95% CI 1.14-1.71), larger right molecular layer (OR = 1.51, 95% CI 1.14-2.00) and smaller right cornu ammonis (CA)3 volumes (OR = 0.61, 95% CI 0.48-0.79) were associated with prevalent depressive symptoms with a chronic course. No associations of hippocampal subfield volumes with incident depressive symptoms were found. Yet, lower left hippocampal amygdala transition area (HATA) volume was associated with incident depressive symptoms with chronic course (hazard ratio = 0.70, 95% CI 0.55-0.89). CONCLUSIONS: Differences in hippocampal fissure, molecular layer and CA volumes might co-occur or follow the onset of depressive symptoms, in particular with a chronic course. Smaller HATA was associated with an increased risk of incident (chronic) depression. Our results could capture a biological foundation for the development of chronic depressive symptoms, and stresses the need to discriminate subtypes of depression to unravel its biological underpinnings.


Assuntos
Depressão , Hipocampo , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Incidência , Prevalência , Hipocampo/patologia , Lobo Temporal , Imageamento por Ressonância Magnética/métodos , Tamanho do Órgão
2.
Alzheimers Dement (Amst) ; 15(3): e12459, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37675435

RESUMO

Introduction: There is an urgent need for biomarkers identifying individuals at risk of early-stage cognitive impairment. Using cross-sectional data from The Maastricht Study, this study included 197 individuals with mild cognitive impairment (MCI) and 200 cognitively unimpaired individuals aged 40 to 75, matched by age, sex, and educational level. Methods: We assessed the association of plasma sphingolipid and ceramide transfer protein (CERT) levels with MCI and adjusted for potentially confounding risk factors. Furthermore, the relationship of plasma sphingolipids and CERTs with magnetic resonance imaging brain volumes was assessed and age- and sex-stratified analyses were performed. Results: Associations of plasma ceramide species C18:0 and C24:1 and combined plasma ceramide chain lengths (ceramide risk score) with MCI were moderated by sex, but not by age, and higher levels were associated with MCI in men. No associations were found among women. In addition, higher levels of ceramide C20:0, C22:0, and C24:1, but not the ceramide risk score, were associated with larger volume of the hippocampus after controlling for covariates, independent of MCI. Although higher plasma ceramide C18:0 was related to higher plasma CERT levels, no association of CERT levels was found with MCI or brain volumes. Discussion: Our results warrant further analysis of plasma ceramides as potential markers for MCI in middle-aged men. In contrast to previous studies, no associations of plasma sphingolipids with MCI or brain volumes were found in women, independent of age. These results highlight the importance of accounting for sex- and age-related factors when examining sphingolipid and CERT metabolism related to cognitive function.

3.
Neuroimage Clin ; 39: 103455, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37356423

RESUMO

AIMS/HYPOTHESIS: We investigated whether prediabetes, type 2 diabetes, and continuous measures of hyperglycemia are associated with tissue volume differences in specific subfields of the hippocampus. METHODS: We used cross-sectional data from 4,724 participants (58.7 ± 8.5 years, 51.5% women) of The Maastricht Study, a population-based prospective cohort. Glucose metabolism status was assessed with an oral glucose tolerance test, and defined as type 2 diabetes (n = 869), prediabetes (n = 671), or normal glucose metabolism (n = 3184). We extracted 12 hippocampal subfield volumes per hemisphere with FreeSurfer v6.0 using T1w and FLAIR 3T MRI images. We used multiple linear regression and linear trend analysis, and adjusted for total intracranial volume, demographic, lifestyle, and cardiovascular risk factors. RESULTS: Type 2 diabetes was significantly associated with smaller volumes in the hippocampal subfield fimbria (standardized beta coefficient ± standard error (ß ± SE) = -0.195 ± 0.04, p-value < 0.001), the hippocampus proper, i.e. Cornu Ammonis (CA) 1, CA2/3, CA4, dentate gyrus, subiculum and presubiculum (ß ± SE < -0.105 ± 0.04, p-value < 0.006); as well as the hippocampal tail (ß ± SE = -0.162 ± 0.04, p-value < 0.001). Prediabetes showed no significant associations. However, linear trend analysis indicated a dose-response relation from normal glucose metabolism, to prediabetes, to type 2 diabetes. Multiple continuous measures of hyperglycemia were associated with smaller volumes of the subfields fimbria (ß ± SE < -0.010 ± 0.011, p-value < 0.001), dentate gyrus (ß ± SE < -0.013 ± 0.010, p-value < 0.002), CA3 (ß ± SE < -0.014 ± 0.011, p-value < 0.001), and tail (ß ± SE < -0.006 ± 0.012, p-value < 0.003). CONCLUSIONS/INTERPRETATION: Type 2 diabetes and measures of hyperglycemia are associated with hippocampal subfield atrophy, independently of lifestyle and cardiovascular risk factors. We found evidence for a dose-response relationship from normal glucose metabolism, to prediabetes, to type 2 diabetes. Prediabetes stages could give a window of opportunity for the early prevention of brain disease.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Estado Pré-Diabético , Humanos , Feminino , Masculino , Estado Pré-Diabético/diagnóstico por imagem , Estudos Transversais , Estudos Prospectivos , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Imageamento por Ressonância Magnética/métodos , Glucose
4.
Brain Behav ; 12(8): e2707, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35861657

RESUMO

BACKGROUND AND PURPOSE: Sequalae following stroke represents a significant challenge in current rehabilitation. The location and size of focal lesions are only moderately predictive of the diverse cognitive outcome after stroke. One explanation building on recent work on brain networks proposes that the cognitive consequences of focal lesions are caused by damages to anatomically distributed brain networks supporting cognition rather than specific lesion locations. METHODS: To investigate the association between poststroke structural disconnectivity and cognitive performance, we estimated individual level whole-brain disconnectivity probability maps based on lesion maps from 102 stroke patients using normative data from healthy controls. Cognitive performance was assessed in the whole sample using Montreal Cognitive Assessment, and a more comprehensive computerized test protocol was performed on a subset (n = 82). RESULTS: Multivariate analysis using Partial Least Squares on the disconnectome maps revealed that higher disconnectivity in right insular and frontal operculum, superior temporal gyrus and putamen was associated with poorer MoCA performance, indicating that lesions in regions connected with these brain regions are more likely to cause cognitive impairment. Furthermore, our results indicated that disconnectivity within these clusters was associated with poorer performance across multiple cognitive domains. CONCLUSIONS: These findings demonstrate that the extent and distribution of structural disconnectivity following stroke are sensitive to cognitive deficits and may provide important clinical information predicting poststroke cognitive sequalae.


Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Acidente Vascular Cerebral , Encéfalo , Mapeamento Encefálico/métodos , Cognição , Disfunção Cognitiva/etiologia , Humanos , Testes Neuropsicológicos
5.
Sci Adv ; 7(51): eabj9446, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34910505

RESUMO

The folding of the human cerebral cortex is a highly genetically regulated process that allows for a much larger surface area to fit into the cranial vault and optimizes functional organization. Sulcal depth is a robust yet understudied measure of localized folding, previously associated with multiple neurodevelopmental disorders. Here, we report the first genome-wide association study of sulcal depth. Through the multivariate omnibus statistical test (MOSTest) applied to vertex-wise measures from 33,748 U.K. Biobank participants (mean age, 64.3 years; 52.0% female), we identified 856 genome-wide significant loci (P < 5 × 10−8). Comparisons with cortical thickness and surface area indicated that sulcal depth has higher locus yield, heritability, and effective sample size. There was a large amount of genetic overlap between these traits, with gene-based analyses indicating strong associations with neurodevelopmental processes. Our findings demonstrate sulcal depth is a promising neuroimaging phenotype that may enhance our understanding of cortical morphology.

6.
Front Immunol ; 12: 749264, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691063

RESUMO

Background: COVID-19 is characterized by strikingly large, mostly unexplained, interindividual variation in symptom severity: while some individuals remain nearly asymptomatic, others suffer from severe respiratory failure. Previous vaccinations for other pathogens, in particular tetanus, may partly explain this variation, possibly by readying the immune system. Methods: We made use of data on COVID-19 testing from 103,049 participants of the UK Biobank (mean age 71.5 years, 54.2% female), coupled to immunization records of the last ten years. Using logistic regression, covarying for age, sex, respiratory disease diagnosis, and socioeconomic status, we tested whether individuals vaccinated for tetanus, diphtheria or pertussis, differed from individuals that had only received other vaccinations on 1) undergoing a COVID-19 test, 2) being diagnosed with COVID-19, and 3) whether they developed severe COVID-19 symptoms. Results: We found that individuals with registered diphtheria or tetanus vaccinations are less likely to develop severe COVID-19 than people who had only received other vaccinations (diphtheria odds ratio (OR)=0.47, p-value=5.3*10-5; tetanus OR=0.52, p-value=1.2*10-4). Discussion: These results indicate that a history of diphtheria or tetanus vaccinations is associated with less severe manifestations of COVID-19. These vaccinations may protect against severe COVID-19 symptoms by stimulating the immune system. We note the correlational nature of these results, yet the possibility that these vaccinations may influence the severity of COVID-19 warrants follow-up investigations.


Assuntos
COVID-19/imunologia , Vacina contra Coqueluche/imunologia , SARS-CoV-2/imunologia , Toxoide Tetânico/imunologia , Vacinação , Idoso , COVID-19/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença
7.
Int Psychogeriatr ; 33(11): 1217-1228, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34399870

RESUMO

We present associations between neuropsychiatric symptoms (NPS) and brain morphology in a large sample of patients with mild cognitive impairment (MCI) and Alzheimer's disease with dementia (AD dementia).Several studies assessed NPS factor structure in MCI and AD dementia, but we know of no study that tested for associations between NPS factors and brain morphology. The use of factor scores increases parsimony and power. For transparency, we performed an additional analysis with selected Neuropsychiatric Inventory - Questionnaire (NPI-Q) items. Including regional cortical thickness, cortical and subcortical volumes, we examined associations between NPS and brain morphology across the whole brain in an unbiased fashion. We reported both statistical significance and effect sizes, using linear models adjusted for multiple comparisons by false discovery rate (FDR). Moreover, we included an interaction term for diagnosis and could thereby compare associations of NPS and brain morphology between MCI and AD dementia.We found an association between the factor elation and thicker right anterior cingulate cortex across MCI and AD dementia. Associations between the factors depression to thickness of the banks of the left superior temporal sulcus and psychosis to the left post-central volume depended on diagnosis: in MCI these associations were positive, in AD dementia negative.Our findings indicate that NPS in MCI and AD dementia are not exclusively associated with atrophy and support previous findings of associations between NPS and mainly frontotemporal brain structures. OBJECTIVES: Neuropsychiatric symptoms (NPS) are common in mild cognitive impairment (MCI) and Alzheimer's disease with dementia (AD dementia), but their brain structural correlates are unknown. We tested for associations between NPS and MRI-based cortical and subcortical morphometry in patients with MCI and AD dementia. DESIGN: Cross-sectional. SETTINGS: Conducted in Norway. PARTICIPANTS: Patients with MCI (n = 102) and AD dementia (n = 133) from the Memory Clinic and the Geriatric Psychiatry Unit at Oslo University Hospital. MEASUREMENTS: Neuropsychiatric Inventory ­ Questionnaire (NPI-Q) severity indices were reduced using principal component analysis (PCA) and tested for associations with 170 MRI features using linear models and false discovery rate (FDR) adjustment. We also tested for differences between groups. For transparency, we added analyses with selected NPI-Q items. RESULTS: PCA revealed four factors: elation, psychosis, depression, and motor behavior.FDR adjustment revealed a significant positive association (B = 0.20, pFDR < 0.005) between elation and thickness of the right caudal anterior cingulate cortex (ACC) across groups, and significant interactions between diagnosis and psychosis (B = −0.48, pFDR < 0.0010) on the left post-central volume and between diagnosis and depression (B = −0.40, pFDR < 0.005) on the thickness of the banks of the left superior temporal sulcus. Associations of apathy, anxiety, and nighttime behavior to the left temporal lobe were replicated. CONCLUSIONS: The positive association between elation and ACC thickness suggests that mechanisms other than atrophy underly elation. Interactions between diagnosis and NPS on MRI features suggest different mechanisms of NPS in our MCI and AD dementia samples. The results contribute to a better understanding of NPS brain mechanisms in MCI and AD dementia.


Assuntos
Doença de Alzheimer , Apatia , Disfunção Cognitiva , Idoso , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Estudos Transversais , Humanos , Testes Neuropsicológicos
8.
Front Neurosci ; 15: 653130, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290577

RESUMO

Background: Alzheimer's disease (AD) and depression are debilitating brain disorders that are often comorbid. Shared brain mechanisms have been implicated, yet findings are inconsistent, reflecting the complexity of the underlying pathophysiology. As both disorders are (partly) heritable, characterising their genetic overlap may provide aetiological clues. While previous studies have indicated negligible genetic correlations, this study aims to expose the genetic overlap that may remain hidden due to mixed directions of effects. Methods: We applied Gaussian mixture modelling, through MiXeR, and conjunctional false discovery rate (cFDR) analysis, through pleioFDR, to genome-wide association study (GWAS) summary statistics of AD (n = 79,145) and depression (n = 450,619). The effects of identified overlapping loci on AD and depression were tested in 403,029 participants of the UK Biobank (UKB) (mean age 57.21, 52.0% female), and mapped onto brain morphology in 30,699 individuals with brain MRI data. Results: MiXer estimated 98 causal genetic variants overlapping between the 2 disorders, with 0.44 concordant directions of effects. Through pleioFDR, we identified a SNP in the TMEM106B gene, which was significantly associated with AD (B = -0.002, p = 9.1 × 10-4) and depression (B = 0.007, p = 3.2 × 10-9) in the UKB. This SNP was also associated with several regions of the corpus callosum volume anterior (B > 0.024, p < 8.6 × 10-4), third ventricle volume ventricle (B = -0.025, p = 5.0 × 10-6), and inferior temporal gyrus surface area (B = 0.017, p = 5.3 × 10-4). Discussion: Our results indicate there is substantial genetic overlap, with mixed directions of effects, between AD and depression. These findings illustrate the value of biostatistical tools that capture such overlap, providing insight into the genetic architectures of these disorders.

9.
Neuroimage ; 237: 118174, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34000406

RESUMO

Quality control of brain segmentation is a fundamental step to ensure data quality. Manual quality control strategies are the current gold standard, although these may be unfeasible for large neuroimaging samples. Several options for automated quality control have been proposed, providing potential time efficient and reproducible alternatives. However, those have never been compared side to side, which prevents consensus in the appropriate quality control strategy to use. This study aimed to elucidate the changes manual editing of brain segmentations produce in morphological estimates, and to analyze and compare the effects of different quality control strategies on the reduction of the measurement error. Structural brain MRI from 259 participants of The Maastricht Study were used. Morphological estimates were automatically extracted using FreeSurfer 6.0. Segmentations with inaccuracies were manually edited, and morphological estimates were compared before and after editing. In parallel, 12 quality control strategies were applied to the full sample. Those included: two manual strategies, in which images were visually inspected and either excluded or manually edited; five automated strategies, where outliers were excluded based on the tools "MRIQC" and "Qoala-T", and the metrics "morphological global measures", "Euler numbers" and "Contrast-to-Noise ratio"; and five semi-automated strategies, where the outliers detected through the mentioned tools and metrics were not excluded, but visually inspected and manually edited. In order to quantify the effects of each quality control strategy, the proportion of unexplained variance relative to the total variance was extracted after the application of each strategy, and the resulting differences compared. Manually editing brain surfaces produced particularly large changes in subcortical brain volumes and moderate changes in cortical surface area, thickness and hippocampal volumes. The performance of the quality control strategies depended on the morphological measure of interest. Overall, manual quality control strategies yielded the largest reduction in relative unexplained variance. The best performing automated alternatives were those based on Euler numbers and MRIQC scores. The exclusion of outliers based on global morphological measures produced an increase of relative unexplained variance. Manual quality control strategies are the most reliable solution for quality control of brain segmentation and parcellation. However, measures must be taken to prevent the subjectivity associated with these strategies. The detection of inaccurate segmentations based on Euler numbers or MRIQC provides a time efficient and reproducible alternative. The exclusion of outliers based on global morphological estimates must be avoided.


Assuntos
Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Imageamento por Ressonância Magnética/normas , Neuroimagem/métodos , Neuroimagem/normas , Controle de Qualidade , Adulto , Idoso , Estudos Transversais , Feminino , Guias como Assunto , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade
10.
Cereb Cortex ; 30(10): 5597-5603, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32483632

RESUMO

The thickness of the cerebral cortical sheet and its surface area are highly heritable traits thought to have largely distinct polygenic architectures. Despite large-scale efforts, the majority of their genetic determinants remain unknown. Our ability to identify causal genetic variants can be improved by employing brain measures that better map onto the biology we seek to understand. Such measures may have fewer variants but with larger effects, that is, lower polygenicity and higher discoverability. Using Gaussian mixture modeling, we estimated the number of causal variants shared between mean cortical thickness and total surface area, as well as the polygenicity and discoverability of regional measures. We made use of UK Biobank data from 30 880 healthy White European individuals (mean age 64.3, standard deviation 7.5, 52.1% female). We found large genetic overlap between total surface area and mean thickness, sharing 4016 out of 7941 causal variants. Regional surface area was more discoverable (P = 2.6 × 10-6) and less polygenic (P = 0.004) than regional thickness measures. These findings may serve as a roadmap for improved future GWAS studies; knowledge of which measures are most discoverable may be used to boost identification of genetic predictors and thereby gain a better understanding of brain morphology.


Assuntos
Córtex Cerebral/anatomia & histologia , Herança Multifatorial , Idoso , Feminino , Estudo de Associação Genômica Ampla , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão/genética
11.
Neuroimage Clin ; 25: 102159, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31927499

RESUMO

Cognitive deficits are important predictors for outcome, independence and quality of life after stroke, but often remain unnoticed and unattended because other impairments are more evident. Computerized cognitive training (CCT) is among the candidate interventions that may alleviate cognitive difficulties, but the evidence supporting its feasibility and effectiveness is scarce, partly due to the lack of tools for outcome prediction and monitoring. Magnetic resonance imaging (MRI) provides candidate markers for disease monitoring and outcome prediction. By integrating information not only about lesion extent and localization, but also regarding the integrity of the unaffected parts of the brain, advanced MRI provides relevant information for developing better prediction models in order to tailor cognitive intervention for patients, especially in a chronic phase. Using brain age prediction based on MRI based brain morphometry and machine learning, we tested the hypotheses that stroke patients with a younger-appearing brain relative to their chronological age perform better on cognitive tests and benefit more from cognitive training compared to patients with an older-appearing brain. In this randomized double-blind study, 54 patients who suffered mild stroke (>6 months since hospital admission, NIHSS≤7 at hospital discharge) underwent 3-weeks CCT and MRI before and after the intervention. In addition, patients were randomized to one of two groups receiving either active or sham transcranial direct current stimulation (tDCS). We tested for main effects of brain age gap (estimated age - chronological age) on cognitive performance, and associations between brain age gap and task improvement. Finally, we tested if longitudinal changes in brain age gap during the intervention were sensitive to treatment response. Briefly, our results suggest that longitudinal brain age prediction based on automated brain morphometry is feasible and reliable in stroke patients. However, no significant association between brain age and both performance and response to cognitive training were found.


Assuntos
Envelhecimento , Encéfalo , Disfunção Cognitiva , Remediação Cognitiva , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/fisiopatologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/terapia , Terapia Combinada , Método Duplo-Cego , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Adulto Jovem
12.
Mol Psychiatry ; 25(11): 3053-3065, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-30279459

RESUMO

The hippocampus is a heterogeneous structure, comprising histologically distinguishable subfields. These subfields are differentially involved in memory consolidation, spatial navigation and pattern separation, complex functions often impaired in individuals with brain disorders characterized by reduced hippocampal volume, including Alzheimer's disease (AD) and schizophrenia. Given the structural and functional heterogeneity of the hippocampal formation, we sought to characterize the subfields' genetic architecture. T1-weighted brain scans (n = 21,297, 16 cohorts) were processed with the hippocampal subfields algorithm in FreeSurfer v6.0. We ran a genome-wide association analysis on each subfield, co-varying for whole hippocampal volume. We further calculated the single-nucleotide polymorphism (SNP)-based heritability of 12 subfields, as well as their genetic correlation with each other, with other structural brain features and with AD and schizophrenia. All outcome measures were corrected for age, sex and intracranial volume. We found 15 unique genome-wide significant loci across six subfields, of which eight had not been previously linked to the hippocampus. Top SNPs were mapped to genes associated with neuronal differentiation, locomotor behaviour, schizophrenia and AD. The volumes of all the subfields were estimated to be heritable (h2 from 0.14 to 0.27, all p < 1 × 10-16) and clustered together based on their genetic correlations compared with other structural brain features. There was also evidence of genetic overlap of subicular subfield volumes with schizophrenia. We conclude that hippocampal subfields have partly distinct genetic determinants associated with specific biological processes and traits. Taking into account this specificity may increase our understanding of hippocampal neurobiology and associated pathologies.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Hipocampo/anatomia & histologia , Hipocampo/patologia , Neuroimagem , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética , Esquizofrenia/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Criança , Pré-Escolar , Feminino , Estudo de Associação Genômica Ampla , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Esquizofrenia/diagnóstico por imagem , Adulto Jovem
13.
PeerJ ; 6: e5908, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30533290

RESUMO

Multimodal imaging enables sensitive measures of the architecture and integrity of the human brain, but the high-dimensional nature of advanced brain imaging features poses inherent challenges for the analyses and interpretations. Multivariate age prediction reduces the dimensionality to one biologically informative summary measure with potential for assessing deviations from normal lifespan trajectories. A number of studies documented remarkably accurate age prediction, but the differential age trajectories and the cognitive sensitivity of distinct brain tissue classes have yet to be adequately characterized. Exploring differential brain age models driven by tissue-specific classifiers provides a hitherto unexplored opportunity to disentangle independent sources of heterogeneity in brain biology. We trained machine-learning models to estimate brain age using various combinations of FreeSurfer based morphometry and diffusion tensor imaging based indices of white matter microstructure in 612 healthy controls aged 18-87 years. To compare the tissue-specific brain ages and their cognitive sensitivity, we applied each of the 11 models in an independent and cognitively well-characterized sample (n = 265, 20-88 years). Correlations between true and estimated age and mean absolute error (MAE) in our test sample were highest for the most comprehensive brain morphometry (r = 0.83, CI:0.78-0.86, MAE = 6.76 years) and white matter microstructure (r = 0.79, CI:0.74-0.83, MAE = 7.28 years) models, confirming sensitivity and generalizability. The deviance from the chronological age were sensitive to performance on several cognitive tests for various models, including spatial Stroop and symbol coding, indicating poorer performance in individuals with an over-estimated age. Tissue-specific brain age models provide sensitive measures of brain integrity, with implications for the study of a range of brain disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...