Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(19)2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36231032

RESUMO

Bone grafts can be engineered by differentiating human mesenchymal stromal cells (MSCs) via the endochondral and intramembranous ossification pathways. We evaluated the effects of each pathway on the properties of engineered bone grafts and their capacity to drive bone regeneration. Bone-marrow-derived MSCs were differentiated on silk scaffolds into either hypertrophic chondrocytes (hyper) or osteoblasts (osteo) over 5 weeks of in vitro cultivation, and were implanted subcutaneously for 12 weeks. The pathways' constructs were evaluated over time with respect to gene expression, composition, histomorphology, microstructure, vascularization and biomechanics. Hypertrophic chondrocytes expressed higher levels of osteogenic genes and deposited significantly more bone mineral and proteins than the osteoblasts. Before implantation, the mineral in the hyper group was less mature than that in the osteo group. Following 12 weeks of implantation, the hyper group had increased mineral density but a similar overall mineral composition compared with the osteo group. The hyper group also displayed significantly more blood vessel infiltration than the osteo group. Both groups contained M2 macrophages, indicating bone regeneration. These data suggest that, similar to the body's repair processes, endochondral pathway might be more advantageous when regenerating large defects, whereas intramembranous ossification could be utilized to guide the tissue formation pattern with a scaffold architecture.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Osso e Ossos , Humanos , Células-Tronco Mesenquimais/metabolismo , Neovascularização Patológica/metabolismo , Seda/farmacologia , Engenharia Tecidual/métodos
2.
Nanomaterials (Basel) ; 11(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946726

RESUMO

The additive manufacturing of low elastic modulus alloys that have a certain level of porosity for biomedical needs is a growing area of research. Here, we show the results of manufacturing of porous and dense samples by a laser powder bed fusion (LPBF) of Ti-Nb alloy, using two distinctive fusion strategies. The nanostructured Ti-Nb alloy powders were produced by mechanical alloying and have a nanostructured state with nanosized grains up to 90 nm. The manufactured porous samples have pronounced open porosity and advanced roughness, contrary to dense samples with a relatively smooth surface profile. The structure of both types of samples after LPBF is formed by uniaxial grains having micro- and nanosized features. The inner structure of the porous samples is comprised of an open interconnected system of pores. The volume fraction of isolated porosity is 2 vol. % and the total porosity is 20 vol. %. Cell viability was assessed in vitro for 3 and 7 days using the MG63 cell line. With longer culture periods, cells showed an increased cell density over the entire surface of a porous Ti-Nb sample. Both types of samples are not cytotoxic and could be used for further in vivo studies.

3.
Am J Sports Med ; 48(9): 2151-2160, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32543880

RESUMO

BACKGROUND: Bone mineral density at the humeral head is reduced in patients with chronic rotator cuff tears. Bone loss in the humeral head is associated with repair failure after rotator cuff reconstruction. Bisphosphonates (eg, zoledronic acid) increase bone mineral density. HYPOTHESIS: Zoledronic acid improves bone mineral density of the humeral head and biomechanical properties of the enthesis after reconstruction of chronic rotator cuff tears in rats. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 32 male Sprague-Dawley rats underwent unilateral (left) supraspinatus tenotomy with delayed transosseous rotator cuff reconstruction after 3 weeks. All rats were sacrificed 8 weeks after rotator cuff repair. Animals were randomly assigned to 1 of 2 groups. At 1 day after rotator cuff reconstruction, the intervention group was treated with a single subcutaneous dose of zoledronic acid at 100 µg/kg bodyweight, and the control group received 1 mL of subcutaneous saline solution. In 12 animals of each group, micro-computed tomography scans of both shoulders were performed as well as biomechanical testing of the supraspinatus enthesis of both sides. In 4 animals of each group, histological analyses were conducted. RESULTS: In the intervention group, bone volume fraction (bone volume/total volume [BV/TV]) of the operated side was higher at the lateral humeral head (P = .005) and the medial humeral head (P = .010) compared with the control group. Trabecular number on the operated side was higher at the lateral humeral head (P = .004) and the medial humeral head (P = .001) in the intervention group. Maximum load to failure rates on the operated side were higher in the intervention group (P < .001). Cortical thickness positively correlated with higher maximum load to failure rates in the intervention group (r = 0.69; P = .026). Histological assessment revealed increased bone formation in the intervention group. CONCLUSION: Single-dose therapy of zoledronic acid provided an improvement of bone microarchitecture at the humeral head as well as an increase of maximum load to failure rates after transosseous reconstruction of chronic rotator cuff lesions in rats. CLINICAL RELEVANCE: Zoledronic acid improves bone microarchitecture as well as biomechanical properties after reconstruction of chronic rotator cuff tears in rodents. These results need to be verified in clinical investigations.


Assuntos
Densidade Óssea , Lesões do Manguito Rotador , Manguito Rotador , Ácido Zoledrônico/uso terapêutico , Animais , Fenômenos Biomecânicos , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Manguito Rotador/cirurgia , Lesões do Manguito Rotador/cirurgia , Cicatrização , Microtomografia por Raio-X
5.
Am J Sports Med ; 47(9): 2158-2166, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31206305

RESUMO

BACKGROUND: Characteristics of chronic rotator cuff tears include continuous loss of tendon structure as well as tendon elasticity, followed by a high failure rate after surgical reconstruction. Several studies have already shown the beneficial effect of extracorporeal shockwave therapy (ESWT) on tissue regeneration in tendon pathologies. HYPOTHESIS: ESWT improves biomechanical tendon properties as well as functional shoulder outcomes in chronic rotator cuff reconstruction in rodents. STUDY DESIGN: Controlled laboratory study. METHODS: After tendon detachment and 3 weeks of degeneration, a subsequent transosseous reattachment of the supraspinatus tendon was performed in 48 adult male Sprague-Dawley rats (n = 16 per group). Rodents were randomly assigned to 3 study groups: no ESWT/control group, intraoperative ESWT (IntraESWT), and intra- and postoperative ESWT (IntraPostESWT). Shoulder joint function, as determined by gait analysis, was assessed repeatedly during the observation period. Eight weeks after tendon reconstruction, the rats were euthanized, and biomechanical and gene expression analyses were performed. RESULTS: Macroscopically, all repairs were intact at the time of euthanasia, with no ruptures detectable. Biomechanical analyses showed significantly improved load-to-failure testing results in both ESWT groups in comparison with the control group (control, 0.629; IntraESWT, 1.102; IntraPostESWT, 0.924; IntraESWT vs control, P≤ .001; IntraPostESWT vs control, P≤ .05). Furthermore, functional gait analyses showed a significant enhancement in intensity measurements for the IntraPostESWT group in comparison with the control group (P≤ .05). Gene expression analysis revealed no significant differences among the 3 groups. CONCLUSION: Clearly improved biomechanical results were shown in the single-application and repetitive ESWT groups. Furthermore, functional evaluation showed significantly improved intensity measurements for the repetitive ESWT group. CLINICAL RELEVANCE: This study underpins a new additional treatment possibility to prevent healing failure. Improved biomechanical stability and functionality may enable faster remobilization as well as an accelerated return to work and sports activities. Furthermore, as shockwave therapy is a noninvasive, easy-to-perform, cost-effective treatment tool with no undesired side effects, this study is of high clinical relevance in orthopaedic surgery. Based on these study results, a clinical study has already been initiated to clinically confirm the improved functionality by ESWT.


Assuntos
Tratamento por Ondas de Choque Extracorpóreas , Procedimentos Ortopédicos , Lesões do Manguito Rotador/cirurgia , Animais , Fenômenos Biomecânicos , Masculino , Ratos , Ratos Sprague-Dawley , Procedimentos de Cirurgia Plástica , Manguito Rotador/cirurgia , Ombro/cirurgia , Tendões/cirurgia , Cicatrização/efeitos dos fármacos
6.
Am J Sports Med ; 47(3): 620-627, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30653344

RESUMO

BACKGROUND: Given the unsatisfactory results and reported drawbacks of anterior cruciate ligament (ACL) reconstruction, such as donor site morbidity and the limited choice of grafts in revision surgery, new regenerative approaches based on tissue-engineering strategies are currently under investigation. PURPOSES: To determine (1) if a novel silk fiber-based ACL scaffold is able to initiate osteointegration in the femoral and tibial bone tunnels under in vivo conditions and (2) if the osteointegration process will be improved by intraoperatively seeding the scaffolds with the autologous stromal vascular fraction, an adipose-derived, stem cell-rich isolate from knee fat pads. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 33 sheep underwent ACL resection and were then randomly assigned to 2 experimental groups: ACL reconstruction with a scaffold alone and ACL reconstruction with a cell-seeded scaffold. Half of the sheep in each group were randomly chosen and euthanized 6 months after surgery and the other half at 12 months. To analyze the integration of the silk-based scaffold in the femoral and tibial bone tunnels, hard tissue histology and micro-computed tomography measurements were performed. RESULTS: Hard tissue histological workup showed that in all treatment groups, with or without the application of the autologous stromal vascular fraction, an interzone of collagen fibers had formed between bone and silk-based graft. This collagen-fiber continuity partly consisted of Sharpey fibers, comparable with tendon-bone healing known for autografts and allografts. Insertion sites were more broad based at 6 months and more concentrated on the slightly protruding, bony knoblike structures at 12 months. Histologically, no differences between the treatment groups were detectable. Analysis of micro-computed tomography measurements revealed a significantly higher tissue density for the cell-seeded scaffold group as compared with the scaffold-alone group in the tibial but not femoral bone tunnel after 12 months of implantation. CONCLUSION: The novel silk fiber-based scaffold for ACL regeneration demonstrated integration into the bone tunnels via the formation of a fibrous interzone similar to allografts and autografts. Histologically, additional cell seeding did not enhance osteointegration. No significant differences between 6 and 12 months could be detected. After 12 months, there was still a considerable amount of silk present, and a longer observation period is necessary to see if a true ligament-bone enthesis will be formed. CLINICAL RELEVANCE: ACL regeneration with a silk fiber-based scaffold with and without additional cell seeding may provide an alternative treatment option to current techniques of surgical reconstruction.


Assuntos
Reconstrução do Ligamento Cruzado Anterior/métodos , Ligamento Cruzado Anterior/fisiologia , Ligamento Cruzado Anterior/cirurgia , Osseointegração , Seda , Alicerces Teciduais , Animais , Ligamento Cruzado Anterior/diagnóstico por imagem , Lesões do Ligamento Cruzado Anterior/fisiopatologia , Lesões do Ligamento Cruzado Anterior/cirurgia , Feminino , Fêmur/fisiologia , Fêmur/cirurgia , Modelos Animais , Distribuição Aleatória , Ovinos , Tíbia/fisiologia , Tíbia/cirurgia , Transplante Autólogo , Transplante Homólogo , Microtomografia por Raio-X
7.
J Invest Surg ; 32(7): 646-653, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29561208

RESUMO

Purpose: Topical hemostatic agents are an important means of controlling or preventing bleeding. This study was performed to compare gelatin-thrombin matrix with smooth particles (SmGM) versus gelatin-thrombin matrix with stellate particles (StGM) in a porcine kidney bleeding model. Materials and methods: In male pigs, reproducible lesions (diameter and depth ∼10 mm) were created in the renal cortex. Each lesion was treated topically using either SmGM or StGM. Blood loss was quantified before and 2, 5 and 10 minutes after treatment. Dry mass, ultrastructural and histologic analyses were also performed. Results: Thirty-two lesions were treated with SmGM and 32 with StGM; median initial bleeding rates were 27.6 and 29.1 mL/min, respectively. Two minutes post-application, SmGM was associated with significantly less bleeding than StGM (0.574 vs 0.920 mL/min; p < .0001). This difference stemmed principally from lesions with initial blood loss >29 mL/min, where bleeding rates at 2 minutes were ∼3-fold higher with StGM (1.636 vs 0.567 mL/min; p ≥ 0.040). Dry mass per unit volume of hemostatic agent was significantly higher with SmGM versus StGM. SmGM formed discrete, smooth particles, while StGM particles were stellate and tended to coalesce. Histologic analysis showed more solid mass, larger particles and less intervening space with SmGM versus StGM. Conclusions: In a severe, high-volume bleeding model, residual bleeding at 2 minutes was significantly lower with SmGM versus StGM, and SmGM showed greater consistency across bleeding intensities. These findings may be attributable to dry mass per unit volume and/or ultrastructural differences between the two agents.


Assuntos
Perda Sanguínea Cirúrgica/prevenção & controle , Esponja de Gelatina Absorvível/administração & dosagem , Hemostasia Cirúrgica/métodos , Rim/cirurgia , Trombina/administração & dosagem , Animais , Modelos Animais de Doenças , Humanos , Masculino , Suínos , Resultado do Tratamento
8.
J Mater Sci Mater Med ; 29(6): 71, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29796769

RESUMO

Two self-adhering hemostatic patches, based on either PEG-coated collagen (PCC) or PEG-coated oxidized cellulose (PCOC), are compared regarding to maximum burst pressure, mechanical stability, and swelling. In addition, the induction of tissue adhesions by the materials was assessed in a rabbit liver abrasion model. Both materials showed comparable sealing efficacy in a burst pressure test (37 ± 16 vs. 35 ± 8 mmHg, P = 0.730). After incubation in human plasma, PCC retained its mechanical properties over the test period of 8 h, while PCOC showed faster degradation after the 2 h time-point. The degradation led to a significantly decreased force at break (minimum force at break 0.55 N during 8 h for PCC, 0.27 N for PCOC; p < 0.001). Further, PCC allowed significantly higher deformation before break (52% after 4 h and 50% after 8 h for PCC, 18% after 4 h and 23% after 8 h for PCOC; p = 0.003 and p < 0.001 for 4 h and 8 h, respectively) and showed less swelling in human plasma (maximum increase in thickness: ~20% PCC, ~100% PCOC). Faster degradation of PCOC was visible macroscopically and histologically in vivo after 14 days. PCC showed visible structural residues with little cellular infiltration while strong infiltration with no remaining structural material was seen with PCOC. In vivo, a higher incidence of adhesion formation after PCOC application was detected. In conclusion, PCC has more reliable mechanical properties, reduced swelling, and less adhesion formation than PCOC. PCC may offer greater clinical benefit for surgeons in procedures that have potential risk for body fluid leakage or that require prolonged mechanical stability.


Assuntos
Celulose Oxidada/química , Celulose/química , Colágeno/química , Hemostáticos/química , Aderências Teciduais/prevenção & controle , Animais , Materiais Biocompatíveis/química , Adesão Celular , Hemostasia , Humanos , Fígado/patologia , Teste de Materiais , Oxigênio/química , Polietilenoglicóis/química , Pressão , Coelhos , Estresse Mecânico
9.
Tissue Eng Part C Methods ; 22(12): 1095-1107, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27846786

RESUMO

Natural extracellular matrix-derived biomaterials from decellularized allogenic tissues are of increasing interest for tissue engineering because their structure and composition provide a complexity that is not achievable with current manufacturing techniques. The prerequisite to bring allogenic tissue from bench to bedside as a functional biomaterial is the full removal of cells while preserving most of its native characteristics such as structure and composition. The exceptionally dense structure of articular cartilage, however, poses a special challenge for decellularization, scaffold preparation, and reseeding. Therefore, we tested 24 different protocols aiming to remove cells and glycosaminoglycans (GAG) while preserving the collagen backbone and ultrastructure. The resulting matrices were analyzed for cell removal (DNA quantification, haematoxylin and eosin staining), GAG content (dimethyl methylene blue assay, Alcian blue staining and micro-computed tomography), collagen integrity (immunohistochemistry and ultrastructure), and biomechanics (compression test). Furthermore, seeding tests were conducted to evaluate cell viability and attachment to the scaffolds. Sodium dodecyl sulfate-based protocols yielded satisfactory reduction of DNA content, yet had negative effects on cell viability and attachment. Hydrochloric acid efficiently decellularized the scaffold and pepsin emerged as best option for GAG depletion. Combining these two reagents led to our final protocol, most efficient in DNA and GAG depletion while preserving the collagen architecture. The compressive modulus decreased in the absence of GAG to ∼1/3 of native cartilage, which is significantly higher than that by commercially available scaffolds tested as a reference (ranging from 1/25 to 1/100 of native cartilage). Cytocompatibility tests showed that human adipose-derived stromal cells readily adhered to the scaffold. In this study, we established a protocol combining freeze-thaw cycles, osmotic shock, and treatment with hydrochloric acid followed by a pepsin digestion step, achieving successful decellularization and GAG depletion within 1 week, resulting in a cytocompatible material with intact collagen structure. The protocol provides a basis for the generation of allogeneic scaffolds, potentially substituting manufactured scaffolds currently used in clinical articular cartilage treatment.


Assuntos
Tecido Adiposo/citologia , Cartilagem Articular/citologia , Condrócitos/citologia , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Tecido Adiposo/fisiologia , Cartilagem Articular/fisiologia , Sobrevivência Celular , Células Cultivadas , Condrócitos/fisiologia , Matriz Extracelular , Humanos , Células-Tronco Mesenquimais/fisiologia , Microtomografia por Raio-X
10.
J Mater Sci Mater Med ; 27(12): 188, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27817094

RESUMO

Schwann cells play a key role in peripheral nerve regeneration. Failure in sufficient formation of Büngner bands due to impaired Schwann cell proliferation has significant effects on the functional outcome after regeneration. Therefore, the growth substrate for Schwann cells should be considered with highest priority in any peripheral nerve tissue engineering approach. Due to its excellent biocompatibility silk fibroin has most recently attracted considerable interest as a biomaterial for use as conduit material in peripheral nerve regeneration. In this study we established a protocol to covalently bind collagen and laminin, which have been isolated from human placenta, to silk fibroin utilizing carbodiimide chemistry. Altered adhesion, viability and proliferation of Schwann cells were evaluated. A cell adhesion assay revealed that the functionalization with both, laminin or collagen, significantly improved Schwann cell adhesion to silk fibroin. Moreover laminin drastically accelerated adhesion. Schwann cell proliferation and viability assessed with BrdU and MTT assay, respectively, were significantly increased in the laminin-functionalized groups. The results suggest beneficial effects of laminin on both, cell adhesion as well as proliferative behaviour of Schwann cells. To conclude, the covalent tailoring of silk fibroin drastically enhances its properties as a cell substratum for Schwann cells, which might help to overcome current hurdles bridging long distance gaps in peripheral nerve injuries with the use of silk-based nerve guidance conduits.


Assuntos
Fibroínas/química , Placenta/química , Células de Schwann/citologia , Animais , Bombyx , Adesão Celular , Proliferação de Células , Sobrevivência Celular , Colágeno/química , Feminino , Regeneração Tecidual Guiada/métodos , Laminina/química , Masculino , Microscopia de Fluorescência , Regeneração Nervosa/efeitos dos fármacos , Gravidez , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Engenharia Tecidual/métodos , Alicerces Teciduais/química
11.
Acta Biomater ; 29: 125-134, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26432442

RESUMO

Biomaterials based on decellularized tissues are increasingly attracting attention as functional alternatives to other natural or synthetic materials. However, a source of non-cadaver human allograft material would be favorable. Here we establish a decellularization method of vascular tissue from cryopreserved human placenta chorionic plate starting with an initial freeze-thaw step followed by a series of chemical treatments applied with a custom-made perfusion system. This novel pulsatile perfusion set-up enabled us to successfully decellularize the vascular tissue with lower concentrations of chemicals and shorter exposure times compared to a non-perfusion process. The decellularization procedure described here lead to the preservation of the native extracellular matrix architecture and the removal of cells. Quantitative analysis revealed no significant changes in collagen content and a retained glycosaminoglycan content of approximately 29%. In strain-to-failure tests, the decellularized grafts showed similar mechanical behavior compared to native controls. In addition, the mechanical values for ultimate tensile strength and stiffness were in an acceptable range for in vivo applications. Furthermore, biocompatibility of the decellularized tissue and its recellularizationability to serve as an adequate substratum for upcoming recellularization strategies using primary human umbilical vein endothelial cells (HUVECs) was demonstrated. HUVECs cultured on the decellularized placenta vessel matrix performed endothelialization and maintained phenotypical characteristics and cell specific expression patterns. Overall, the decellularized human placenta vessels can be a versatile tool for experimental studies on vascularization and as potent graft material for future in vivo applications. STATEMENT OF SIGNIFICANCE: In the US alone more than 1million vascular grafts are needed in clinical practice every year. Despite severe disadvantages, such as donor site morbidity, autologous grafting from the patient's own arteries or veins is regarded as the gold standard for vascular tissue repair. Besides, strategies based on synthetic or natural materials have shown limited success. Tissue engineering approaches based on decellularized tissues are regarded as a promising alternative to clinically used treatments to overcome the observed limitations. However, a source for supply of non-cadaver human allograft material would be favorable. Here, we established a decellularization method of vascular tissue from the human placenta chorionic plate, a suitable human tissue source of consistent quality. The decellularized human placenta vessels can be a potent graft material for future in vivo applications and furthermore might be a versatile tool for experimental studies on vascularization.


Assuntos
Prótese Vascular , Córion/química , Matriz Extracelular/química , Células Endoteliais da Veia Umbilical Humana/metabolismo , Alicerces Teciduais/química , Feminino , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos
12.
Acta Biomater ; 24: 251-65, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26141153

RESUMO

The generation of functional biomimetic skeletal muscle constructs is still one of the fundamental challenges in skeletal muscle tissue engineering. With the notion that structure strongly dictates functional capabilities, a myriad of cell types, scaffold materials and stimulation strategies have been combined. To further optimize muscle engineered constructs, we have developed a novel bioreactor system (MagneTissue) for rapid engineering of skeletal muscle-like constructs with the aim to resemble native muscle in terms of structure, gene expression profile and maturity. Myoblasts embedded in fibrin, a natural hydrogel that serves as extracellular matrix, are subjected to mechanical stimulation via magnetic force transmission. We identify static mechanical strain as a trigger for cellular alignment concomitant with the orientation of the scaffold into highly organized fibrin fibrils. This ultimately yields myotubes with a more mature phenotype in terms of sarcomeric patterning, diameter and length. On the molecular level, a faster progression of the myogenic gene expression program is evident as myogenic determination markers MyoD and Myogenin as well as the Ca(2+) dependent contractile structural marker TnnT1 are significantly upregulated when strain is applied. The major advantage of the MagneTissue bioreactor system is that the generated tension is not exclusively relying on the strain generated by the cells themselves in response to scaffold anchoring but its ability to subject the constructs to individually adjustable strain protocols. In future work, this will allow applying mechanical stimulation with different strain regimes in the maturation process of tissue engineered constructs and elucidating the role of mechanotransduction in myogenesis. STATEMENT OF SIGNIFICANCE: Mechanical stimulation of tissue engineered skeletal muscle constructs is a promising approach to increase tissue functionality. We have developed a novel bioreactor-based 3D culture system, giving the user the possibility to apply different strain regimes like static, cyclic or ramp strain to myogenic precursor cells embedded in a fibrin scaffold. Application of static mechanical strain leads to alignment of fibrin fibrils along the axis of strain and concomitantly to highly aligned myotube formation. Additionally, the pattern of myogenic gene expression follows the temporal progression observed in vivo with a more thorough induction of the myogenic program when static strain is applied. Ultimately, the strain protocol used in this study results in a higher degree of muscle maturity demonstrated by enhanced sarcomeric patterning and increased myotube diameter and length. The introduced bioreactor system enables new possibilities in muscle tissue engineering as longer cultivation periods and different strain applications will yield tissue engineered muscle-like constructs with improved characteristics in regard to functionality and biomimicry.


Assuntos
Reatores Biológicos , Matriz Extracelular/química , Fibrina/química , Hidrogéis/química , Músculo Esquelético/metabolismo , Estresse Mecânico , Animais , Antígenos de Diferenciação/biossíntese , Linhagem Celular , Camundongos , Proteínas Musculares/biossíntese , Músculo Esquelético/citologia
13.
Acta Biomater ; 10(6): 2506-17, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24530561

RESUMO

Various tissue engineering (TE) approaches are based on silk fibroin (SF) as scaffold material because of its superior mechanical and biological properties compared to other materials. The translation of one-step TE approaches to clinical application has generally failed so far due to the requirement of a prolonged cell seeding step before implantation. Here, we propose that the plant lectin WGA (wheat germ agglutinin), covalently bound to SF, will mediate cell adhesion in a time frame acceptable to be part of a one-step surgical intervention. After the establishment of a modification protocol utilizing carbodiimide chemistry, we examined the attachment of cells, with a special focus on adipose-derived stromal cells (ASC), on WGA-SF compared to pure native SF. After a limited time frame of 20min the attachment of ASCs to WGA-SF showed an increase of about 17-fold, as compared to pure native SF. The lectin-mediated cell adhesion further showed an enhanced resistance to trypsin (as a protease model) and to applied fluid shear stress (mechanical stability). Moreover, we could demonstrate that the adhesion of ASCs on the WGA-SF does not negatively influence proliferation or differentiation potential into the osteogenic lineage. To test for in vitro immune response, the proliferation of peripheral blood mononuclear cells in contact with the WGA-SF was determined, showing no alterations compared to plain SF. All these findings suggest that the WGA modification of SF offers important benefits for translation of SF scaffolds into clinical applications.


Assuntos
Adesão Celular , Fibroínas , Lectinas/química , Seda , Diferenciação Celular , Células Cultivadas , Humanos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...