Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 13: 896268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091376

RESUMO

Though the facilitating influence of stress on drug abuse is well documented, the mechanisms underlying this interaction have yet to be fully elucidated. The present study explores the neurobiological mechanisms underpinning the sensitized response to the psychomotor-stimulating effects of cocaine following chronic restraint stress (CRS), emphasizing the differential contribution of both subcompartments of the nucleus accumbens (NA), the core (NAcore) and shell (NAshell), to this phenomenon. Adult male Wistar rats were restrained for 2 h/day for 7 days and, 2 weeks after the last stress exposure (day 21), all animals were randomly assigned to behavioral, biochemical or neurochemical tests. Our results demonstrated that the enduring CRS-induced increase in psychostimulant response to cocaine was paralleled by an increase of extracellular dopamine levels in the NAcore, but not the NAshell, greater than that observed in the non-stress group. Furthermore, we found that CRS induced an impairment of glutamate homeostasis in the NAcore, but not the NAshell. Its hallmarks were increased basal extracellular glutamate concentrations driven by a CRS-induced downregulation of GLT-1, blunted glutamate levels in response to cocaine and postsynaptic structural remodeling in pre-stressed animals. In addition, ceftriaxone, a known GLT-1 enhancer, prevented the CRS-induced GLT-1 downregulation, increased basal extracellular glutamate concentrations and changes in structural plasticity in the NAcore as well as behavioral cross-sensitization to cocaine, emphasizing the biological importance of GLT-1 in the comorbidity between chronic stress exposure and drug abuse. A future perspective concerning the paramount relevance of the stress-induced disruption of glutamate homeostasis as a vulnerability factor to the development of stress and substance use disorders during early life or adulthood of descendants is provided.

2.
Brain Behav Immun ; 101: 359-376, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065197

RESUMO

Stressful experience-induced cocaine-related behaviors are associated with a significant impairment of glutamatergic mechanisms in the Nucleus Accumbens core (NAcore). The hallmarks of disrupted glutamate homeostasis following restraint stress are the enduring imbalance of glutamate efflux after a cocaine stimulus and increased basal concentrations of extracellular glutamate attributed to GLT-1 downregulation in the NAcore. Glutamate transmission is tightly linked to microglia functioning. However, the role of microglia in the biological basis of stress-induced addictive behaviors is still unknown. By using minocycline, a potent inhibitor of microglia activation with anti-inflammatory properties, we determined whether microglia could aid chronic restraint stress (CRS)-induced glutamate homeostasis disruption in the NAcore, underpinning stress-induced cocaine self-administration. In this study, adult male rats were restrained for 2 h/day for seven days (day 1-7). From day 16 until completing the experimental protocol, animals received a vehicle or minocycline treatment (30 mg/Kg/12h i.p.). On day 21, animals were assigned to microscopic, biochemical, neurochemical or behavioral studies. We confirm that the CRS-induced facilitation of cocaine self-administration is associated with enduring GLT-1 downregulation, an increase of basal extracellular glutamate and postsynaptic structural plasticity in the NAcore. These alterations were strongly related to the CRS-induced reactive microglia and increased TNF-α mRNA and protein expression, since by administering minocycline, the impaired glutamate homeostasis and the facilitation of cocaine self-administration were prevented. Our findings are the first to demonstrate that minocycline suppresses the CRS-induced facilitation of cocaine self-administration and glutamate homeostasis disruption in the NAcore. A role of microglia is proposed for the development of glutamatergic mechanisms underpinning stress-induced vulnerability to cocaine addiction.


Assuntos
Cocaína , Animais , Cocaína/metabolismo , Ácido Glutâmico/metabolismo , Masculino , Microglia/metabolismo , Minociclina/metabolismo , Minociclina/farmacologia , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley
3.
Sci Rep ; 11(1): 12964, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155271

RESUMO

Preclinical models of stress-induced relapse to drug use have shown that the dysregulation of glutamatergic transmission within the nucleus accumbens (NA) contributes notably to the reinstatement of cocaine-seeking behavior in rodents. In this sense, there has been increasing interest in the cannabinoid type-1 receptor (CB1R), due to its crucial role in modulating glutamatergic neurotransmission within brain areas involved in drug-related behaviors. This study explored the involvement of CB1R within the NA subregions in the restraint stress-induced reinstatement of cocaine-conditioned place preference (CPP), as well as in the regulation of glutamatergic transmission, by using a pharmacological approach and the in vivo microdialysis sampling technique in freely moving rats. CB1R blockade by the antagonist/inverse agonist AM251 (5 nmol/0.5 µl/side) or CB1R activation by the agonist ACEA (0.01 fmol/0.5 µl/side), prevented or potentiated restraint stress-induced reinstatement of cocaine-CPP, respectively, after local administration into NAcore, but not NAshell. In addition, microdialysis experiments demonstrated that restraint stress elicited a significant increase in extracellular glutamate in NAcore under reinstatement conditions, with the local administration of AM251 or ACEA inhibiting or potentiating this, respectively. Interestingly, this rise specifically corresponded to the cocaine-associated CPP compartment. We also showed that this context-dependent change in glutamate paralleled the expression of cocaine-CPP, and disappeared after the extinction of this response. Taken together, these findings demonstrated the key role played by CB1R in mediating reinstatement of cocaine-CPP after restraint stress, through modulation of the context-specific glutamate release within NAcore. Additionally, CB1R regulation of basal extracellular glutamate was demonstrated and proposed as the underlying mechanism.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/etiologia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Cocaína/efeitos adversos , Ácido Glutâmico/metabolismo , Núcleo Accumbens/metabolismo , Receptor CB1 de Canabinoide/agonistas , Estresse Fisiológico , Animais , Comportamento Animal , Biomarcadores , Condicionamento Clássico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Extinção Psicológica , Espaço Extracelular/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/antagonistas & inibidores , Estresse Fisiológico/genética
4.
Eur J Neurosci ; 53(5): 1441-1449, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33159343

RESUMO

Altered glutamate transmission within the nucleus accumbens (NAc) has been proposed as a central mechanism underlying behavioural sensitisation associated with repeated cocaine exposure. In addition to glutamate, enkephalin, an endogenous opioid peptide derived from proenkephalin, is necessary for the neuroadaptations associated with chronic cocaine. However, the influence of enkephalin on long-term changes in glutamate transmission within the NAc associated with cocaine-induced sensitisation has not been described. This study used knockout proenkephalin mice (KO) to study the influence of endogenous enkephalin on the adaptations in glutamate neurotransmission associated with repeated cocaine treatment. Wild-type (WT) and KO mice were treated with daily cocaine injections for 9 days to induce sensitisation. On days 15 and 21, the animals received a cocaine challenge and locomotor sensitisation was evaluated, and microdialysis was performed to determine accumbens glutamate content on day 21. No expression of behavioural sensitisation to cocaine was evidenced in the KO mice. Consistently, these showed no changes in glutamate transmission in the NAc associated with repeated cocaine. This study reveals the central role of enkephalin in regulating the glutamate mechanisms associated with cocaine sensitisation.


Assuntos
Cocaína , Animais , Encefalinas/genética , Ácido Glutâmico , Camundongos , Microdiálise , Núcleo Accumbens
5.
J Endocrinol ; 245(2): 179-191, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32092035

RESUMO

The molecular mechanisms underlying the capability of pituitary tumours to avoid unregulated cell proliferation are still not well understood. However, the NF-κB transcription factor, which is able to modulate not only cellular senescence but also tumour progression, has emerged as a targeted candidate. This work was focused on the NF-κB role in cellular senescence during the progression of experimental pituitary tumours. Also, the contribution of the signalling pathways in senescence-associated NF-κB activation and the senescence-associated secretory phenotype (SASP) and pro-survival-NF-κB target genes transcription were analysed. A robust NF-κB activation was seen at E20-E40 of tumour development accompanied by a marked SA-ß-Gal co-reactivity in the tumour pituitary parenchyma. The induction of TNFα and IL1-ß as specific SASP-related NF-κB target genes as well as Bcl-2 and Bcl-xl pro-survival genes was shown to be accompanied by increases in the p-p38 MAPK protein levels, starting at the E20 stage and strengthening from 40 to 60 days of tumour growth. It is noteworthy that p-JNK displayed a similar pattern of activation during pituitary tumour development, while p-AKT and p-ERK1/2 were downregulated. By employing a pharmacological strategy to abrogate NF-κB activity, we demonstrated a marked reduction in SA-ß-Gal activity and a slight decrease in Ki67 immunopositive cells after NF-κB blockade. These results suggest a central role for NF-κB in the regulation of the cellular senescence programme, leading to the strikingly benign intrinsic nature of pituitary adenomas.


Assuntos
Senescência Celular/genética , NF-kappa B/fisiologia , Neoplasias Hipofisárias/genética , Transdução de Sinais/genética , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Genes bcl-2/fisiologia , Hipoxantina Fosforribosiltransferase/metabolismo , Interleucina-1beta/metabolismo , Masculino , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo , Proteína bcl-X/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Front Psychiatry ; 9: 222, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29892236

RESUMO

Enkephalin expression is high in mesocorticolimbic areas associated with psychostimulant-induced behavioral and neurobiological effects, and may also modulate local neurotransmission in this circuit network. Psychostimulant drugs, like amphetamine and cocaine, significantly increase the content of enkephalin in these brain structures, but we do not yet understand the specific significance of this drug-induced adaptation. In this review, we summarize the neurochemical and molecular mechanism of psychostimulant-induced enkephalin activation in mesocorticolimbic brain areas, and the contribution of this opioid peptide in the pivotal neuroadaptations and long-term behavioral changes underlying psychostimulant addiction. There is evidence suggesting that adaptive changes in enkephalin content in the mesocorticolimbic circuit, induced by acute and chronic psychostimulant administration, may represent a key initial step in the long-term behavioral and neuronal plasticity induced by these drugs.

7.
Free Radic Biol Med ; 120: 41-55, 2018 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-29548793

RESUMO

The cellular transformation of normal functional cells to neoplastic ones implies alterations in the cellular metabolism and mitochondrial function in order to provide the bioenergetics and growth requirements for tumour growth progression. Currently, the mitochondrial physiology and dynamic shift during pituitary tumour development are not well understood. Pituitary tumours present endocrine neoplastic benign growth which, in previous reports, we had shown that in addition to increased proliferation, these tumours were also characterized by cellular senescence signs with no indication of apoptosis. Here, we show clear evidence of oxidative stress in pituitary cells, accompanied by bigger and round mitochondria during tumour development, associated with augmented biogenesis and an increased fusion process. An activation of the Nrf2 stress response pathway together with the attenuation of the oxidative damage signs occurring during tumour development were also observed which will probably provide survival advantages to the pituitary cells. These neoplasms also presented a progressive increase in lactate production, suggesting a metabolic shift towards glycolysis metabolism. These findings might imply an oxidative stress state that could impact on the pathogenesis of pituitary tumours. These data may also reflect that pituitary cells can modulate their metabolism to adapt to different energy requirements and signalling events in a pathophysiological situation to obtain protection from damage and enhance their survival chances. Thus, we suggest that mitochondria function, oxidative stress or damage might play a critical role in pituitary tumour progression.


Assuntos
Transformação Celular Neoplásica/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Neoplasias Hipofisárias/metabolismo , Adaptação Fisiológica/fisiologia , Animais , Antioxidantes/metabolismo , Metabolismo Energético/fisiologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
8.
Addict Biol ; 21(2): 326-38, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25431310

RESUMO

Behavioral sensitization to cocaine is associated to neuroadaptations that contribute to addiction. Enkephalin is highly expressed in mesocorticolimbic areas associated with cocaine-induced sensitization; however, their influence on cocaine-dependent behavioral and neuronal plasticity has not been explained. In this study, we employed a knockout (KO) model to investigate the contribution of enkephalin in cocaine-induced behavioral sensitization. Wild-type (WT) and proenkephalin KO mice were treated with cocaine once daily for 9 days to induce sensitization. Additionally, to clarify the observations in KO mice, the same procedure was applied in C57BL/6 mice, except that naloxone was administered before each cocaine injection. All animals received a cocaine challenge on days 15 and 21 of the treatment to evaluate the expression of locomotor sensitization. On day 21, microdialysis measures of accumbal extracellular dopamine, Western blotting for GluR1 AMPA receptor (AMPAR), phosphorylated ERK2 (pERK2), CREB (pCREB), TrKB (pTrkB) were performed in brain areas relevant for sensitization from KO and WT and/or naloxone- and vehicle pre-treated animals. We found that KO mice do not develop sensitization to the stimulating properties of cocaine on locomotor activity and on dopamine release in the nucleus accumbens (NAc). Furthermore, pivotal neuroadaptations such as the increase in pTrkB receptor, pERK/CREB and AMPAR related to sensitized responses were absent in the NAc from KO mice. Consistently, full abrogation of cocaine-induced behavioral and neuronal plasticity after naloxone pre-treatment was observed. We show for first time that the proenkephalin system is essential in regulating long-lasting pivotal neuroadaptations in the NAc underlying behavioral sensitization to cocaine.


Assuntos
Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Encefalinas/farmacologia , Neurotransmissores/farmacologia , Análise de Variância , Animais , Comportamento Animal/efeitos dos fármacos , Dopamina/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Fosforilação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA