Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Plants (Basel) ; 13(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38592889

RESUMO

Salinity is one of the substantial threats to plant productivity and could be escorted by other stresses such as heat and drought. It impairs critical biological processes, such as photosynthesis, energy, and water/nutrient acquisition, ultimately leading to cell death when stress intensity becomes uncured. Therefore, plants deploy several proper processes to overcome such hostile circumstances. Grapevine is one of the most important crops worldwide that is relatively salt-tolerant and preferentially cultivated in hot and semi-arid areas. One of the most applicable strategies for sustainable viticulture is using salt-tolerant rootstock such as Ruggeri (RUG). The rootstock showed efficient capacity of photosynthesis, ROS detoxification, and carbohydrate accumulation under salinity. The current study utilized the transcriptome profiling approach to identify the molecular events of RUG throughout a regime of salt stress followed by a recovery procedure. The data showed progressive changes in the transcriptome profiling throughout salinity, underpinning the involvement of a large number of genes in transcriptional reprogramming during stress. Our results established a considerable enrichment of the biological process GO-terms related to salinity adaptation, such as signaling, hormones, photosynthesis, carbohydrates, and ROS homeostasis. Among the battery of molecular/cellular responses launched upon salinity, ROS homeostasis plays the central role of salt adaptation.

2.
Sci Rep ; 14(1): 5588, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454118

RESUMO

In this paper, a new metamaterial absorber (MMA) is presented that exhibits peak absorptions at 3.26 GHz, 11.6 GHz, and 17.13 GHz within S, X, and Ku bands. The unit cell of the proposed MMA is constructed on an FR4 substrate having an electrical dimension of 0.144λ × 0.144λ, where wavelength, λ is calculated at the lowest absorption frequency. The unique structural design of the unit cell consists of two concentric copper rings with which dumbbell-shaped structures are attached. The rotating symmetrical structural design of this MMA provides around 93.8%, 96.47%, and 99.95% peak absorptance in the mentioned frequencies, which is invariable with the change of incident angle as well as polarization angle. The metamaterial properties of the proposed absorber are studied along with the surface current analysis. The MMA shows single negative behaviour and it also exhibits high-quality factors (Q factor) of 21.73, 41.42, and 51.90 at maximum absorptance frequencies. The MMA is analysed by it's equivalent circuit to understand the resonance phenomenon, which is verified through simulation in Advanced Design Systems (ADS) software. The testing is done on the developed prototype of the proposed MMA. Measurement results are in close proximity to the simulation results. Due to its high Q factor, high EMR, and insensitivity to polarization and angle of incidence, it can be utilized as a part of miniaturized microwave device. In addition, the proposed MMA can exhibit high sensing performance and flexibility to differentiate different oils in S, X, and Ku bands.

3.
Sci Rep ; 14(1): 7268, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538645

RESUMO

Aqueous solution containing different concentration (0.5, 0.6 and 1.0%) (w/v) of Polyvinyl pyrrolodon-Iodine (PVP-I) complex, a well-known antiseptic; is prepared and the stability and homogeneity of these solution is assessed as per the ICH Guidelines and International Harmonized Protocol respectively. The solutions were found to be sufficiently homogeneous and stable for a year at 25 °C (60%RH). Measurement uncertainty of the prepared PVP-I solutions were estimated by identifying possible sources of uncertainty using Ishikawa diagram and preparing uncertainty budget based on scope of calibration laboratory. The stable and homogenized PVP-I solution is to be used in a clinical trial for the application on oro and nasopharynx against novel SARS-CoV-2 Virus.


Assuntos
Anti-Infecciosos Locais , COVID-19 , Humanos , SARS-CoV-2 , Povidona-Iodo , Polivinil , Incerteza , COVID-19/epidemiologia , Nasofaringe
4.
Heliyon ; 10(6): e27917, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38533039

RESUMO

One of the biggest environmental worries in the world today is the risk of arsenic (As) contamination in groundwater. The Atomic Absorption Spectrometer (AAS) was used in this work to assess the As content in groundwater samples from 38 shallow (27 m) tubewells in northwest Bangladesh to determine the existing situation, potential source(s), and likely health risk of As and other important water quality parameters. The range of arsenic concentrations (µgL-1) was troublesome and greater than the WHO recommended level for drinking water, ranging from 0.50 to 164 (mean ± SD: 20.22 ± 36.46). In groundwater, the concentrations of Fe, and Mn vary from 0.04 to 52.75 mgL-1 (mean ± SD: 4.23 ± 9.68), and 0.23 to 3.27 mgL-1 (mean ± SD: 1.10 ± 0.67). The obtained groundwater samples have pH values ranging from 5.9 to 7.1, which indicates a somewhat acidic to neutral character. Major cations have an average abundance that is as follows: Ca2+ > Mg2+ > Na+ > K+, while major anions have an average abundance that is as follows: HCO3- > Cl- > SO42- > NO3-; Ca2+ and HCO3- are the main cation and anion, respectively. The groundwater in the Rajarampur village was deemed unfit for drinking or irrigation based on analyses of water quality performed using the entropy water quality index. The Ca-HCO3 type of water, in which Ca2+ and HCO3- are the main positive ions and negative ions, is suggested by the Piper tri-linear diagram. It was discovered that silicate weathering regulates the hydro-geochemical activities in groundwater using a bi-variate examination of several hydro-chemical variables. Four major clusters were observed for the water sample. According to reductive dissolution processes and principal component analysis, the arsenic in groundwater is geogenic in origin. Arsenic is discharged from sediment to groundwater by reductive dissolution of FeOOH and MnOOH, as shown by the modest connection between As, Fe, and Mn. The United Nations Environmental Protection Agency's (USEPA) suggested value for probable cancer risk assessment was 10-6, however the probable cancer risk assessment found a higher value, indicating that the population in the study region was at high risk for cancer. Remedial measures for arsenic mitigation include removing arsenic from groundwater after it is extracted, searching for alternative aquifers, and implementing various water-supply technologies such as dugwells, deep tubewells, pond-sand filters, and rainwater harvesting systems.

5.
Cureus ; 16(1): e52817, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38406079

RESUMO

Background Immunomodulatory therapy for chronic rheumatic disease carries a risk for infectious complications. In Bangladesh, there is limited information regarding patterns and factors associated with infections among patients receiving immunosuppressive medications. Objective The present study aimed to find out patterns and predictors associated with infection among patients who were on different immunosuppressive medications due to chronic rheumatological disease. Methodology This was a retrospective study; all confirmed cases of (new and old) different rheumatological diseases on disease-modifying agents attended at the rheumatology clinic of Dhaka Medical College Hospital from January 2019 to December 2021 were enrolled. Result Among 489 cases, 90 (18.4%) patients had documented infections. The most common rheumatological diseases were systemic lupus erythematosus (28, 31.1%), ankylosing spondylitis (26, 28.8%), and rheumatoid arthritis (20, 22.2%). COVID-19 (28, 31.1%) was the most commonly occurring infection followed by urinary tract infection (14, 15.6%), fungal infection (12, 13.3%), herpes zoster (10, 11.1%), pulmonary tuberculosis (TB) (eight, 8.8%), latent TB (seven, 7.7%), community-acquired pneumonia (six, 6.6%), and sepsis (three, 3.3%). Infection was most prevalent among patients who received steroids of more than 10 mg per day (17, 18.8%) than those less than 10 mg steroid per day (six, 6.7%), Factors associated with infections were (odds ratio, 95% CI, p-value) underweight (2.3, [1.3-2.7], 0.001), anemia (1.8, [1.1-5.7], 0.01), neutropenia (1.6, [1.1-2.9], <0.002), hypoalbuminemia (3.1, [1.6-4.9], 0.001), hypovitaminosis D (1.9, [1.3-4.5], 0.001), high blood sugar (1.5, [1.1-5.3], 0.02), inadequate counseling of steroid side effect (1.7, [1.1-3.9], 0.03), prednisolone >10mg/day (2.2, [1.19-4.10], 0.001). Conclusion COVID-19 pneumonia, urinary tract infections, fungal infection, tuberculosis, herpes zoster, and community-acquired pneumonia were commonly occurring infections among patients receiving different immunosuppressive medications. Factors like poor nutritional status, presence of anemia, leucopenia, hypoalbuminemia, hyperglycemia, and hypovitaminosis D had a significant association with infection. Moreover, inadequate counseling of steroid side effects and history of daily intake of prednisolone (>10mg/day) were also significant factors associated with infection.

6.
J Contam Hydrol ; 261: 104307, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38278020

RESUMO

The Rooppur Nuclear Power Plant (RNPP) at Ishwardi, Bangladesh is planning to go into operation within 2024 and therefore, adjacent areas of RNPP is gaining adequate attention from the scientific community for environmental monitoring purposes especially for water resources management. However, there is a substantial lack of literature as well as environmental datasets for earlier years since very little was done at the beginning of the RNPP's construction phase. Therefore, this study was conducted to assess the potential toxic elements (PTEs) contamination in the groundwater and its associated health risk for residents at the adjacent part of the RNPP during the year of 2014-2015. For the purposes of achieving the aim of the study, groundwater samples were collected seasonally (dry and wet season) from nine sampling sites and afterwards analyzed for water quality indicators such as temperature (Temp.), pH, electrical conductivity (EC), total dissolved solid (TDS), total hardness (TH) and for PTEs including Iron (Fe), Manganese (Mn), Copper (Cu), Lead (Pb), Chromium (Cr), Cadmium (Cd) and Arsenic (As). This study adopted the newly developed Root Mean Square water quality index (RMS-WQI) model to assess the scenario of contamination from PTEs in groundwater whereas the human health risk assessment model was utilized to quantify the risk of toxicity from PTEs. In most of the sampling sites, PTEs concentration was found higher during the wet season than the dry season and Fe, Mn, Cd and As exceeded the guideline limit for drinking water. The RMS score mostly classified the groundwater in terms of PTEs contamination into "Fair" condition. The non-carcinogenic risks (expressed as Hazard Index-HI) revealed that around 44% and 89% of samples for adults and 67% and 100% of samples for children exceeded the threshold limit set by USEPA (HI > 1) and possessed risks through the oral pathway during dry and wet season, respectively. Furthermore, the calculated cumulative HI score was found higher for children than the adults throughout the study period. In terms of carcinogenic risk (CR) from PTEs, the magnitude of risk decreased following the pattern of Cr > As > Cd. Although the current study is based on old dataset, the findings might serve as a baseline for monitoring purposes to reduce future hazardous impact from the power plant.


Assuntos
Arsênio , Água Subterrânea , Metais Pesados , Adulto , Criança , Humanos , Cádmio , Arsênio/análise , Monitoramento Ambiental , Ferro , Manganês , Medição de Risco , Metais Pesados/análise
7.
J Control Release ; 365: 530-543, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952828

RESUMO

Cannabidiol (CBD) is one of the most commonly utilised phytocannabinoids due to its non-psychoactive and multiple potential therapeutic properties and its non-selective pharmacology. Recent studies have demonstrated efficacy of CBD in some types of drug resistant epilepsies in combination with other therapies; comparative efficacy to other agents or placebo has been hoped for anxiety, chronic pain, and inflammatory disorders based on animal data. Although CBD products are generally treated as a restricted substance, these are being eased, partially in response to significant growth in CBD product usage and increased production but more due to emerging evidence about its safety and pharmacological properties. Currently, only one CBD product (Epidiolex®) has been approved by the Australian Therapeutic Goods Administration and US Food and Drug Administration. CBD has demonstrated promise in alleviating gut and lung diseases in vitro; however, its physicochemical properties pose a significant barrier to achieving pharmacological effects in in vivo and clinical trials. Improving CBD formulations and delivery methods using technologies including self-emulsifying emulsion, nano and micro particles could overcome these shortfalls and improve its efficacy. This review focuses on the therapeutic potential of CBD in gastrointestinal and lung diseases from the available in vitro, in vivo, and clinical research. We report on identified research gaps and obstacles in the development of CBD-based therapeutics, including novel delivery methods.


Assuntos
Canabidiol , Pneumopatias , Estados Unidos , Animais , Canabidiol/uso terapêutico , Austrália , Ansiedade/tratamento farmacológico , Trato Gastrointestinal , Pneumopatias/tratamento farmacológico
8.
RSC Adv ; 13(41): 28773-28784, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37790109

RESUMO

Cassia occidentalis L. is widely used in indigenous and traditional medicine, but its impact on multi-drug resistant (MDR) bacterial infections mostly remains unknown. Therefore, this study aimed to evaluate the in vitro antibacterial efficiency of methanol and ethyl acetate extracts of C. occidentalis L. leaves (MECOL and EAECOL) against multi-drug resistant Pseudomonas aeruginosa and to identify potential antibacterial agents through computational studies targeting the LasR protein. Initially, 82 compounds were identified using GC-MS analysis, and the functional groups were determined through FT-IR analysis. Both extracts of the plant exhibited dose-dependent antibacterial activity, with MICs of 104.16 ± 36.08 µg mL-1 for MECOL and 83.33 ± 36.08 µg mL-1 for EAECOL, and an MBC of 125 µg mL-1. Among the 82 compounds, 12 potential compounds were identified based on binding scores using molecular docking with the LasR protein and MM-GBSA analysis. Furthermore, screening for ADME properties, including physicochemical features, water solubility, lipophilicity, RO5 compliance, and toxicity, identified the top three compounds: methyl dihydrojasmonate, methyl benzoate, and 4a-methyl-4,4a,5,6,7,8-hexahydro-2(3H)-naphthalenone, which also demonstrated binding affinity with the active site residues of the LpxC protein of the bacteria. Additionally, molecular dynamics (MD) simulations confirmed the binding reliability of these three phytochemicals to LasR's active pocket, comparable to the protein native inhibitory ligands (C12-HSL). The study offers scientific support for the traditional use of C. occidentalis in treating bacterial infections, highlighting the potential of the three compounds as leads for developing LasR inhibitors to combat multi-drug resistant P. aeruginosa.

9.
Cancer Rep (Hoboken) ; 6(12): e1906, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37867380

RESUMO

BACKGROUND: Gastric cancer, which is also known as stomach cancer, can be influenced by both germline and somatic mutations. Non-synonymous Single Nucleotide Polymorphisms (nsSNPs) in germline have long been reported to play a pivotal role in cancer progression. AIM: The aim of this study is to examine the nsSNP in GC-associated genes. The study also aims to develop a database with extensive information regarding the nsSNPs in the GC-associated genes and their impacts. METHODS AND RESULTS: A total of 34,588 nsSNPs from 1,493,460 SNPs of the 40 genes were extracted from the available SNP database. Drug binding and energy minimization were examined by molecular docking and YASARA. To validate the existence of the germline CDH1 gene mutation (rs34466743) in the isolated blood DNA of gastric cancer (GC) patients, polymerase chain reaction (PCR) and DNA sequencing were performed. According to the results of the gene network analysis, 17 genes may interact with other types of cancer. A total of 11,363 nsSNPs were detected within the 40 GC genes. Among these, 474 nsSNPs were predicted to be damaging and 40 to be the most damaging. The SNPs in domain regions were thought to be strong candidates that alter protein functions. Our findings proposed that most of the selected nsSNPs were within the domains or motif regions. Free Energy Deviation calculation of protein structure pointed toward noteworthy changes in the structure of each protein that can demolish its natural function. Subsequently, drug binding confirmed the structural variation and the ineffectiveness of the drug against the mutant model in individuals with these germline variants. Furthermore, in vitro analysis of the rs34466743 germline variant from the CDH1 gene confirmed the strength and robustness of the pipeline that could expand the somatic alteration for causing cancer. In addition, a comprehensive gastric cancer polymorphism database named "GasCanBase" was developed to make data available to researchers. CONCLUSION: The findings of this study and the "GasCanBase" database may greatly contribute to our understanding of molecular epidemiology and the development of precise therapeutics for gastric cancer. GasCanBase is available at: https://www.gascanbase.com/.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Simulação de Acoplamento Molecular , Mutação em Linhagem Germinativa , Reação em Cadeia da Polimerase , Células Germinativas
10.
Support Care Cancer ; 31(12): 629, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37837446

RESUMO

PURPOSE: Inflammation is thought to play a key role in malignant disease and may play a significant part in the expression of cancer-related symptoms. Cannabidiol (CBD) is a bioactive compound in cannabis and is reported to have significant anti-inflammatory properties. METHOD: Serial C-reactive protein (CRP) levels were measured in all participants recruited to a randomised controlled trial of CBD versus placebo in patients with symptoms related to advanced cancer. A panel of inflammatory cytokines was measured over time in a subset of these patients. RESULTS: There was no difference between the two arms in the trajectory of CRP or cytokine levels from baseline to day 28. CONCLUSION: We were unable to demonstrate an anti-inflammatory effect of CBD in cancer patients. TRIAL REGISTRATION: ANZCTR 26180001220257, registered 20/07/2018.


Assuntos
Canabidiol , Cannabis , Maconha Medicinal , Neoplasias , Humanos , Maconha Medicinal/farmacologia , Maconha Medicinal/uso terapêutico , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Neoplasias/tratamento farmacológico
11.
Artigo em Inglês | MEDLINE | ID: mdl-37905899

RESUMO

Recent studies indicate that mitochondrial dysfunctions and DNA damage have a critical influence on cell survival, which is considered one of the therapeutic targets for cancer therapy. In this study, we demonstrated a comparative study of the effect of polyphenolic carbon quantum dots (CQDs) on in vitro and in vivo antitumor efficacy. Dual emissive (green and yellow) shape specific polyphenolic CQDs (G-CQDs and Y-CQDs) were synthesized from easily available nontoxic precursors (phloroglucinol), and the antitumor property of the as-synthesized probe was investigated as compared to round-shaped blue emissive CQDs (B-CQDs) derived from well-reported precursor citric acid and urea. The B-CQDs had a nuclei-targeting property, and G-CQDs and Y-CQDs had mitochondria-targeting properties. We have found that the polyphenol containing CQDs (at a dose of 100 µg mL-1) specifically attack mitochondria by excess accumulation, altering the metabolism, inhibiting branching pattern, imbalanced Bax/Bcl-2 homeostasis, and ultimately generating oxidative stress levels, leading to oxidative stress-induced cell death in cancer cells in vitro. We show that G-CQDs are the main cause of oxidative stress in cancer cells because of their ability to produce sufficient •OH- and 1O2 radicals, evidenced by electron paramagnetic resonance spectroscopy and a terephthalic acid test. Moreover, the near-infrared absorption properties of the CQDs were exhibited in two-photon (TP) emission, which was utilized for TP cellular imaging of cancer cells without photobleaching. The in vivo antitumor test further discloses that intratumoral injection of G-CQDs can significantly augment the treatment efficacy of subcutaneous tumors without any adverse effects on BalB/c nude mice. We believe that shape-specific polyphenolic CQD-based nanotheranostic agents have a potential role in tumor therapy, thus proving an insight on treatment of malignant cancers.

12.
Heliyon ; 9(9): e19668, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809741

RESUMO

Groundwater resources around the world required periodic monitoring in order to ensure the safe and sustainable utilization for humans by keeping the good status of water quality. However, this could be a daunting task for developing countries due to the insufficient data in spatiotemporal resolution. Therefore, this research work aimed to assess groundwater quality in terms of drinking and irrigation purposes at the adjacent part of the Rooppur Nuclear Power Plant (RNPP) in Bangladesh. For the purposes of achieving the aim of this study, nine groundwater samples were collected seasonally (dry and wet season) and seventeen hydro-geochemical indicators were analyzed, including Temperature (Temp.), pH, electrical conductivity (EC), total dissolved solids (TDS), total alkalinity (TA), total hardness (TH), total organic carbon (TOC), bicarbonate (HCO3-), chloride (Cl-), phosphate (PO43-), sulfate (SO42-), nitrite (NO2-), nitrate (NO3-), sodium (Na+), potassium (K+), calcium (Ca2+) and magnesium (Mg2+). The present study utilized the Canadian Council of Ministers of the Environment water quality index (CCME-WQI) model to assess water quality for drinking purposes. In addition, nine indices including EC, TDS, TH, sodium adsorption ratio (SAR), percent sodium (Na%), permeability index (PI), Kelley's ratio (KR), magnesium hazard ratio (MHR), soluble sodium percentage (SSP), and Residual sodium carbonate (RSC) were used in this research for assessing the water quality for irrigation purposes. The computed mean CCME-WQI score found higher during the dry season (ranges 48 to 74) than the wet season (ranges 40 to 65). Moreover, CCME-WQI model ranked groundwater quality between the "poor" and "marginal" categories during the wet season implying unsuitable water for human consumption. Like CCME-WQI model, majority of the irrigation index also demonstrated suitable water for crop cultivation during dry season. The findings of this research indicate that it requires additional care to improve the monitoring programme for protecting groundwater quality in the RNPP area. Insightful information from this study might be useful as baseline for national strategic planners in order to protect groundwater resources during the any emergencies associated with RNPP.

13.
Environ Monit Assess ; 195(11): 1298, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828129

RESUMO

The surface subsidence in the Krishna Godavari (KG) basin in India has increased with the discovery of crude oil and natural gas reserves since 1983. With private players coming up to bag the exploration and refining contracts, there must be timely monitoring of the surface subsidence of the region so that remedial measures for the resettlement of the populations can be taken promptly. Regular monitoring is necessary since the region is fertile and any seawater ingress results in the loss of valuable cultivable land. Multi-temporal SAR Interferometry (MTInSAR) technique has been applied successfully all over the world for the study and regular monitoring of land surface subsidence scenarios. This study utilizes data from Sentinel-1 C-band SAR sensor for MTInSAR-based surface subsidence and RADAR Vegetation Index (RVI)-based vegetation loss for the same season estimation between 2017 and 2022 for the KG basin region. It is inferred from the study that the region has shown surface subsidence of 80 mm/year between April 2020 and June 2022. This study uses support vector regressor (SVR) to predict the loss in forest cover in terms of RVI using MTInSAR-based surface subsidence, VH, and VV backscatter as parameters. It is observed that the SVR gave R2-statistics of 0.89 and 0.873 in the training and testing phases with a mean absolute error (MAE) and root mean squared error (RMSE) of 0.08 and 0.02, respectively. It is also observed that the region showed a loss of 3.21 km2 of cultivable land between 2020 and 2022.


Assuntos
Monitoramento Ambiental , Florestas , Monitoramento Ambiental/métodos , Índia , Gás Natural , Interferometria
14.
Sci Rep ; 13(1): 15943, 2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37743360

RESUMO

In this article, a unique metamaterial (MTM) structure is presented that exhibits four resonances of transmission coefficient (S21) that fall into S, X, and Ku bands. The MTM design is initiated on a Rogers (RT5880) substrate with an electrical dimension of 0.088 λ × 0.088 λ (λ is calculated at 3.424 GHz). The resonating patch contains four quartiles connected by a central metallic strip. The placement of each quartile is such that the whole resonator is mirror symmetric about the vertical axis. Two H-shaped modifiers connect two quartiles of each vertical half of the resonator. These H-shaped modifiers form the resonance cavity in its vicinity, and thus help significantly to orient the overall resonances of the proposed MTM at 3.424 GHz, 10 GHz, 14.816 GHz, and 16.848 GHz. The resonance phenomena are examined through equivalent circuit modeling and verified in Advanced Design Software (ADS). Metamaterial properties of the proposed MTM are extracted and it exhibits negative permittivity, permeability, and refractive index. The prototype of the MTM is fabricated and measurement is taken. The measured S21 shows a close similarity with the simulated result. Moreover, effective medium ratio (EMR) is calculated for the proposed MTM and a high EMR of 10.95 is obtained that expresses its compactness. This compact MTM with negative permittivity, permittivity, and refractive index can be important component for improving the performance of the miniaturized devices for multi-band wireless communication systems.

15.
Plants (Basel) ; 12(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37765411

RESUMO

Like other plant stresses, salinity is a central agricultural problem, mainly in arid or semi-arid regions. Therefore, salt-adapted plants have evolved several adaptation strategies to counteract salt-related events, such as photosynthesis inhibition, metabolic toxicity, and reactive oxygen species (ROS) formation. European grapes are usually grafted onto salt-tolerant rootstocks as a cultivation practice to alleviate salinity-dependent damage. In the current study, two grape rootstocks, 140 Ruggeri (RUG) and Millardet et de Grasset 420A (MGT), were utilized to evaluate the diversity of their salinity adaptation strategies. The results showed that RUG is able to maintain higher levels of the photosynthetic pigments (Chl-T, Chl-a, and Chl-b) under salt stress, and hence accumulates higher levels of total soluble sugars (TSS), monosaccharides, and disaccharides compared with the MGT rootstock. Moreover, it was revealed that the RUG rootstock maintains and/or increases the enzymatic activities of catalase, GPX, and SOD under salinity, giving it a more efficient ROS detoxification machinery under stress.

16.
PLoS One ; 18(9): e0291496, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37699026

RESUMO

Living organisms maintain a resting membrane potential, which plays an important role in various biophysical and biological processes. In the context of medical applications, irreversible electroporation (IRE) is a non-thermal and minimally invasive technique that utilizes precisely controlled electric field pulses of micro- to millisecond durations to effectively ablate cancer and tumor cells. Previous studies on IRE-induced rupture of cell-mimetic giant unilamellar vesicles (GUVs) have primarily been conducted in the absence of membrane potentials. In this study, we investigated the electroporation of GUVs, including parameters such as the rate constant of rupture and the probability of rupture, in the presence of various negative membrane potentials. The membranes of GUVs were prepared using lipids and channel forming proteins. As the membrane potential increased from 0 to -90 mV, the rate constant of rupture showed a significant increase from (7.5 ± 1.6)×10-3 to (35.6 ± 5.5)×10-3 s-1. The corresponding probability of rupture also exhibited a notable increase from 0.40 ± 0.05 to 0.68 ± 0.05. To estimate the pore edge tension, the electric tension-dependent logarithm of the rate constant was fitted with the Arrhenius equation for different membrane potentials. The presence of membrane potential did not lead to any significant changes in the pore edge tension. The increase in electroporation is reasonably explained by the decrease in the prepore free energy barrier. The choice of buffer used in GUVs can significantly influence the kinetics of electroporation. This study provides valuable insights that can contribute to the application of electroporation techniques in the biomedical field.


Assuntos
Eletroporação , Lipossomas Unilamelares , Potenciais da Membrana , Terapia com Eletroporação , Biofísica
17.
IEEE J Biomed Health Inform ; 27(11): 5345-5356, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37665702

RESUMO

Reconstructing and predicting 3D human walking poses in unconstrained measurement environments have the potential to use for health monitoring systems for people with movement disabilities by assessing progression after treatments and providing information for assistive device controls. The latest pose estimation algorithms utilize motion capture systems, which capture data from IMU sensors and third-person view cameras. However, third-person views are not always possible for outpatients alone. Thus, we propose the wearable motion capture problem of reconstructing and predicting 3D human poses from the wearable IMU sensors and wearable cameras, which aids clinicians' diagnoses on patients out of clinics. To solve this problem, we introduce a novel Attention-Oriented Recurrent Neural Network (AttRNet) that contains a sensor-wise attention-oriented recurrent encoder, a reconstruction module, and a dynamic temporal attention-oriented recurrent decoder, to reconstruct the 3D human pose over time and predict the 3D human poses at the following time steps. To evaluate our approach, we collected a new WearableMotionCapture dataset using wearable IMUs and wearable video cameras, along with the musculoskeletal joint angle ground truth. The proposed AttRNet shows high accuracy on the new lower-limb WearableMotionCapture dataset, and it also outperforms the state-of-the-art methods on two public full-body pose datasets: DIP-IMU and TotalCaputre.


Assuntos
Captura de Movimento , Dispositivos Eletrônicos Vestíveis , Humanos , Movimento , Redes Neurais de Computação , Monitorização Fisiológica , Movimento (Física) , Fenômenos Biomecânicos
18.
Carbohydr Polym ; 320: 121232, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659796

RESUMO

Dynamic tracking of cell migration during tissue regeneration remains challenging owing to imaging techniques that require sophisticated devices, are often lethal to healthy tissues. Herein, we developed a 3D printable non-invasive polymeric hydrogel based on 2,2,6,6-(tetramethylpiperidin-1-yl) oxyl (TEMPO)-oxidized nanocellulose (T-CNCs) and carbon dots (CDs) for the dynamic tracking of cells. The as-prepared T-CNC@CDs were used to fabricate a liquid bio-resin containing gelatin methacryloyl (GelMA) and polyethylene glycol diacrylate (GPCD) for digital light processing (DLP) bioprinting. The shear-thinning properties of the GPCD bio-resin were further improved by the addition of T-CNC@CDs, allowing high-resolution 3D printing and bioprinting of human cells with higher cytocompatibility (viability ∼95 %). The elastic modulus of the printed GPCD hydrogel was found to be ∼13 ± 4.2 kPa, which is ideal for soft tissue engineering. The as-fabricated hydrogel scaffold exhibited tunable structural color property owing to the addition of T-CNC@CDs. Owing to the unique fluorescent property of T-CNC@CDs, the human skin cells could be tracked within the GPCD hydrogel up to 30 days post-printing. Therefore, we anticipate that GPCD bio-resin can be used for 3D bioprinting with high structural stability, dynamic tractability, and tunable mechanical stiffness for image-guided tissue regeneration.


Assuntos
Bioimpressão , Regeneração Tecidual Guiada , Humanos , Engenharia Tecidual , Glicóis , Carbono , Cinacalcete , Corantes , Hidrogéis
19.
Cell Mol Gastroenterol Hepatol ; 16(6): 985-1009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37660948

RESUMO

BACKGROUND & AIMS: MUC13 cell surface mucin is highly expressed on the mucosal surface throughout the intestine, yet its role against bacterial infection is unknown. We investigated how MUC13 impacts Salmonella typhimurium (S Tm) infection and elucidated its mechanisms of action. METHODS: Muc13-/- and wild-type littermate mice were gavaged with 2 isogenic strains of S Tm after pre-conditioning with streptomycin. We assessed clinical parameters, cecal histology, local and systemic bacterial load, and proinflammatory cytokines after infection. Cecal enteroids and epithelial cell lines were used to evaluate the mechanism of MUC13 activity after infection. The interaction between bacterial SiiE and MUC13 was assessed by using siiE-deficient Salmonella. RESULTS: S Tm-infected Muc13-/- mice had increased disease activity, histologic damage, and higher local and systemic bacterial loads. Mechanistically, we found that S Tm binds to MUC13 through its giant SiiE adhesin and that MUC13 acts as a pathogen-binding decoy shed from the epithelial cell surface after pathogen engagement, limiting bacterial invasion. In addition, MUC13 reduces epithelial cell death and intestinal barrier breakdown by enhancing nuclear factor kappa B signaling during infection, independent of its decoy function. CONCLUSIONS: We show for the first time that MUC13 plays a critical role in antimicrobial defense against pathogenic S Tm at the intestinal mucosal surface by both acting as a releasable decoy limiting bacterial invasion and reducing pathogen-induced cell death. This further implicates the cell surface mucin family in mucosal defense from bacterial infection.


Assuntos
Infecções Bacterianas , Mucinas , Animais , Camundongos , Infecções Bacterianas/genética , Infecções Bacterianas/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/patologia , Mucinas/metabolismo , Salmonella typhimurium/metabolismo
20.
J Exp Med ; 220(11)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37695525

RESUMO

Major histocompatibility complex (MHC) II is dynamically expressed on mucosal epithelial cells and is induced in response to inflammation and parasitic infections, upon exposure to microbiota, and is increased in chronic inflammatory diseases. However, the regulation of epithelial cell-specific MHC II during homeostasis is yet to be explored. We discovered a novel role for IL-22 in suppressing epithelial cell MHC II partially via the regulation of endoplasmic reticulum (ER) stress, using animals lacking the interleukin-22-receptor (IL-22RA1), primary human and murine intestinal and respiratory organoids, and murine models of respiratory virus infection or with intestinal epithelial cell defects. IL-22 directly downregulated interferon-γ-induced MHC II on primary epithelial cells by modulating the expression of MHC II antigen A α (H2-Aα) and Class II transactivator (Ciita), a master regulator of MHC II gene expression. IL-22RA1-knockouts have significantly higher MHC II expression on mucosal epithelial cells. Thus, while IL-22-based therapeutics improve pathology in chronic disease, their use may increase susceptibility to viral infections.


Assuntos
Interleucinas , Complexo Principal de Histocompatibilidade , Humanos , Animais , Camundongos , Estresse do Retículo Endoplasmático , Células Epiteliais , Interleucina 22
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...