Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Conserv Physiol ; 11(1): coac082, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36694595

RESUMO

High-latitude lizards live in environments where ambient air temperature at night is frequently below retreat temperatures, which likely has implications for nocturnal emergence and activity. However, patterns of lizard activity at night under current temperate climates are poorly understood, a situation that limits our understanding of potential effects of climate change. We investigated patterns of nocturnal emergence and activity in the cold-adapted, viviparous gecko (Woodworthia 'Otago/Southland'). We measured operative environmental temperature (T e) available to geckos that emerged at night and simultaneously assessed nighttime emergence activity using time-lapse trail cameras. Also, we assessed field body temperature (T b) of emerged geckos of various life history groups at night using thermography to understand how current weather conditions affect field T b of emerged geckos. Our results show that Te , nocturnal emergence activity and field-active T b increased with nighttime air temperature. Nocturnal emergence was highest in spring and summer but also occurred in autumn and (unexpectedly) in winter. Geckos were active over a broad range of T b down to 1.4°C (a new record low for lizards) and on rock surfaces typically warmer than air temperature or T b. We conclude that this nocturnal, high-latitude lizard from the temperate zone is capable of activity at low winter temperatures, but that current climate limits emergence and activity at least in autumn and winter. Activity levels for cool-temperate reptiles will probably increase initially as climates warm, but the consequences of increased nocturnal activity under climate change will probably depend on how climate change affects predator populations as well as the focal species' biology.

2.
J Therm Biol ; 97: 102869, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33863433

RESUMO

Rocky retreats are limited and geologically constrained resources for rock-dwelling nocturnal lizards. Such lizards should seek retreats that offer thermoregulatory benefits without the risk of overheating during the day, and that protect from predation. For cold-adapted species where air temperature is frequently lower than optimum temperature for performance, factors influencing retreat-site selection and whether future warmer conditions will force superficial rock slabs to be abandoned on hot days remain poorly known. Here, we predicted that retreats selected by a nocturnally foraging, cool-temperate gecko from southern New Zealand would be thermally heterogeneous and that future warmer temperature will force lizards to abandon daytime retreats on hot days. We sampled loose rock slabs (potential retreats) in a tussock-grassland site in all seasons. We measured seasonal rock temperature profiles and field body temperature (Tb) of captured geckos using thermography and quantified the physical characteristics of each potential retreat. We found that both physical characteristics and rock temperatures determine choice of retreats. Field Tb of lizards positively correlated with retreat and air temperatures. Also, retreat temperatures, including those of the substrate below the rock slabs, showed complex heterogeneity enabling lizards to choose microsites within retreats to achieve preferred body temperatures intermittently. Observed seasonal shifts in characteristics of occupied rocks imply that lizards choose retreats to maximise warmth in spring, minimise risk of overheating (remain below voluntary thermal maximum, VTmax) in summer and avoid freezing over winter. Our study demonstrates the importance of microclimatic conditions in influencing retreat-site selection. Climate warming might lead to seasonal changes in use of rock slabs and possibly be beneficial initially, but longer-term implications need to be examined.


Assuntos
Regulação da Temperatura Corporal , Mudança Climática , Lagartos/fisiologia , Microclima , Temperatura , Animais , Feminino , Masculino , Nova Zelândia
3.
PLoS One ; 16(3): e0247873, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33661972

RESUMO

Developing and validating methods to determine trends in populations of threatened species is essential for evaluating the effectiveness of conservation interventions. For cryptic species inhabiting remote environments, this can be particularly challenging. Rock wrens, Xenicus gilviventris, are small passerines endemic to the alpine zone of southern New Zealand. They are highly vulnerable to predation by introduced mammalian predators. Establishing a robust, cost-effective monitoring tool to evaluate population trends in rock wrens is a priority for conservation of both the species and, more broadly, as part of a suite of indicators for evaluating effectiveness of management in New Zealand's alpine ecosystems. We assessed the relative accuracy and precision of three population estimation techniques (mark-resight, distance sampling and simple counts on line transects) for two populations of rock wrens in the Southern Alps over six breeding seasons (2012-2018). The performance of these population estimators was compared to known rock wren population size derived from simultaneous territory mapping. Indices of abundance derived from counts on transects were correlated with territory mapping at both study areas, and performed better than either mark-resight methods or distance sampling. Simple counts on standardised line transects are a highly cost-effective method of monitoring birds because they do not require banding a population. As such, we recommend that line transect counts using the design outlined in this paper be adopted as a standard method for long-term monitoring of rock wren populations. Although species-specific testing is required to validate use of low-cost population indices, our results may have utility for the monitoring of other cryptic passerines in relatively open habitats.


Assuntos
Espécies em Perigo de Extinção , Passeriformes , Animais , Conservação dos Recursos Naturais , Ecossistema , Feminino , Masculino , Nova Zelândia , Passeriformes/fisiologia , Densidade Demográfica , Especificidade da Espécie
4.
J Exp Biol ; 223(Pt 20)2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-32778565

RESUMO

Understanding the interaction between upper voluntary thermal limit (VTmax) and water loss may aid in predicting responses of ectotherms to increasing temperatures within microhabitats. However, the temperature at which climate heating will force cool-climate nocturnal lizards to abandon daytime retreats remains poorly understood. Here, we developed a new laboratory protocol for determining VTmax in the retreat-dwelling, viviparous Woodworthia 'Otago/Southland' gecko, based on escape behaviour (abandonment of heated retreat). We compared the body temperature (Tb) at VTmax, and duration of heating, between two source groups with different thermal histories, and among three reproductive groups. We also examined continuous changes in Tb (via an attached biologger) and total evaporative water loss (EWL) during heating. In the field, we measured Tb and microhabitat thermal profiles to establish whether geckos reach VTmax in nature. We found that VTmax and duration of heating varied between source groups (and thus potentially with prior thermal experience), but not among reproductive groups. Moreover, geckos reached a peak temperature slightly higher than VTmax before abandoning the retreat. Total EWL increased with increasing VTmax and with the duration of heating. In the field, pregnant geckos with attached biologgers reached VTmax temperature, and temperatures of some separately monitored microhabitats exceeded VTmax in hot weather implying that some retreats must be abandoned to avoid overheating. Our results suggest that cool-climate nocturnal lizards that inhabit daytime retreats may abandon retreats more frequently if climate warming persists, implying a trade-off between retention of originally occupied shelter and ongoing water loss due to overheating.


Assuntos
Temperatura Alta , Lagartos , Animais , Regulação da Temperatura Corporal , Tomada de Decisões , Água
5.
Ecotoxicology ; 25(3): 548-54, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26841966

RESUMO

Formulations of glyphosate-based herbicides continue to dominate the global herbicide market, while there continue to be concerns regarding the impact of this herbicide on non-target organisms. Research also indicates that the additives within certain glyphosate formulations, such as surfactants, are actually more toxic than the glyphosate active ingredient alone. Concerns arise in particular when glyphosate formulations are proposed for vegetation control in areas inhabited by rare or threatened species. Although the effect of glyphosate on birds and mammals is well studied, reptiles remain neglected in ecotoxicological studies. We investigated whether dermal exposure to two different commercial glyphosate formulations affected performance measures in the New Zealand common skink (Oligosoma polychroma). Fifty-eight skinks were each placed in a box of straw to simulate field conditions and sprayed once with Agpro Glyphosate 360, Yates Roundup Weedkiller (both at the label-specified concentrations of 144 mg glyphosate per 1 L water), or water (control). Agpro Glyphosate 360 contained ethoxylated tallow amine at a concentration of <200 g/L, while the surfactant within Yates Roundup Weedkiller was unknown. Following treatment skinks were kept in captivity and sampled for selected temperature and mass over a four-week period. Neither glyphosate formulation had a significant impact on mass. However, skinks treated with Yates Roundup Weedkiller selected significantly higher temperatures across 3 weeks following exposure. This heat-seeking behaviour could be a fever response to increase metabolism and thereby counteract physiological stress.


Assuntos
Glicina/análogos & derivados , Herbicidas/toxicidade , Lagartos/fisiologia , Animais , Relação Dose-Resposta a Droga , Glicina/toxicidade , Glifosato
6.
New Phytol ; 210(2): 419-30, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26725252

RESUMO

Mechanistic models can help resolve controversy over the responses of mast seeding plants to future environmental change. We evaluate drivers of mast seeding by: developing and validating a new mechanistic resource-based model of mast seeding using four 40-yr Chionochloa (snow tussock) datasets; and comparing the performance of competing empirically-based statistical models, that aim to approximate the mechanisms underlying mast seeding, in explaining simulated and observed data. Our mechanistic model explained 90-99% of the variation in Chionochloa flowering, with higher rates of stored resource mobilisation and lower probability of climatic induction of flowering occurring at lower fertility sites. Inter-annual variation in floral induction and the degree to which seeding is resource-limited explained shifts in the relative performance of different empirical models fitted to data simulated from the mechanistic model. Empirical models explicitly capturing the interaction between the floral induction cue and internal resource state underlying the resource-limited induction mechanism had > 8.7× the statistical support of alternatives when fitted to Chionochloa datasets. We find support for resource-limited floral induction with multiple empirical models consistent with this same mechanism. As both resource acquisition and flowering cues are climate sensitive, we expect climate change to impact upon patterns of mast seeding.


Assuntos
Mudança Climática , Modelos Biológicos , Sementes/fisiologia , Flores/fisiologia , Ligação Genética , Probabilidade , Reprodutibilidade dos Testes , Temperatura
7.
PLoS One ; 9(4): e94214, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24714691

RESUMO

Understanding the mechanisms underlying population declines is critical for preventing the extinction of endangered populations. Positive feedbacks can hasten the process of collapse and create an 'extinction vortex,' particularly in small, isolated populations. We provide a case study of a male-biased sex ratio creating the conditions for extinction in a natural population of tuatara (Sphenodon punctatus) on North Brother Island in the Cook Strait of New Zealand. We combine data from long term mark-recapture surveys, updated model estimates of hatchling sex ratio, and population viability modeling to measure the impacts of sex ratio skew. Results from the mark-recapture surveys show an increasing decline in the percentage of females in the adult tuatara population. Our monitoring reveals compounding impacts on female fitness through reductions in female body condition, fecundity, and survival as the male-bias in the population has increased. Additionally, we find that current nest temperatures are likely to result in more male than female hatchlings, owing to the pattern of temperature-dependent sex determination in tuatara where males hatch at warmer temperatures. Anthropogenic climate change worsens the situation for this isolated population, as projected temperature increases for New Zealand are expected to further skew the hatchling sex ratio towards males. Population viability models predict that without management intervention or an evolutionary response, the population will ultimately become entirely comprised of males and functionally extinct. Our study demonstrates that sex ratio bias can be an underappreciated threat to population viability, particularly in populations of long-lived organisms that appear numerically stable.


Assuntos
Extinção Biológica , Lagartos , Isolamento Reprodutivo , Razão de Masculinidade , Animais , Feminino , Ilhas , Masculino , Modelos Teóricos , Nova Zelândia , Dinâmica Populacional , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...