Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microbiol Res ; 275: 127465, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37543004

RESUMO

The identification of antifungal compounds produced by microorganisms is crucial in the context of sustainable agriculture. Bacteria of the genus Bacillus have a broad spectrum of action that can influence plant growth and control pests, vectors of public health relevance and phytopathogens. Lipopeptides are the main compounds related to the biological control of several pathogen species. Strains with biotechnological potential are identified by means of in vitro bioassays and molecular tests. In this study, strains from the Bacillus Bank of Brazilian Agricultural Research Corporation (EMBRAPA/DF/Brazil) were selected to control the fungal pathogens Sclerotinia sclerotiorum and Fusarium oxysporum by pairing assays. The detection of genes for biosynthesis of antifungal compounds from strains with high pathogen-inhibition capacity was correlated with peptide synthesis, such as bacillomycin D, fengycin d, bacilysin and surfactin. Their gene expression in contact with the pathogen was analyzed by Real-Time PCR. The volatile organic compounds produced by selected Bacillus strains were identified and quantified. In co-culture assays, the inhibition zone between Bacillus strains and Sclerotinia sclerotiorum was evaluated by scanning electron microscopy. Thirteen potentially anti-pathogenic strains were selected. Genes related to the synthesis of antifungal peptides were detected in 11 of them. In five strains, all tested genes were detected. Bacillomycin was the most frequently found lipopeptide gene. The fungus-bacteria interaction potentiated the production of volatiles. Several ketones and other volatile compounds with antifungal activity were identified. Relevant morphological changes in the fungus were observed when paired with bacteria. The study demonstrated the efficacy of the selected strains with regard to the biological control of phytopathogens and their biotechnological potential.


Assuntos
Ascomicetos , Bacillus , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Bacillus/metabolismo , Lipopeptídeos/metabolismo , Bactérias/metabolismo , Doenças das Plantas/microbiologia
2.
Microb Ecol ; 86(4): 2515-2526, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37392204

RESUMO

Bacillus thuringiensis is a Gram-positive aerobic bacterium and the most used biopesticide worldwide. Given the importance of B. thuringiensis strain characterization for the development of new bioinsecticides or transgenic events and the identification and classification of new B. thuringiensis genes and strains to understand its distribution and diversity, this work is aimed at creating a gene identification system based on qPCR reactions utilizing core B. thuringiensis genes cry1, cry2, cry3, cry4, cry5, app6, cry7, cry8, cry9, cry10, cry11, vpb1, vpa2, vip3, cyt1, and cyt2 for the characterization of 257 strains of B. thuringiensis. This system was based on the Invertebrate Bacteria Collection from Embrapa Genetic Resources and Biotechnology and analyzed (a) the degree of correlation between the distribution of these strains and the origin of the substrate from which the strain was isolated and (b) between its distribution and geoclimatic conditions. This study made it possible to observe that the cry1, cry2, and vip3A/B genes occur homogeneously in the Brazilian territory, and some genes are found in specific regions. The biggest reservoir of variability is within B. thuringiensis strains in each region, and it is suggested that both geoclimatic conditions and regional crops interfere with the genetic diversity of the B. thuringiensis strains present in the region, and B. thuringiensis strains can constantly exchange genetic information.


Assuntos
Bacillus thuringiensis , Animais , Bacillus thuringiensis/genética , Endotoxinas/genética , Endotoxinas/química , Reação em Cadeia da Polimerase em Tempo Real , Toxinas de Bacillus thuringiensis , Brasil , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Insetos , Variação Genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/química
3.
Bull Entomol Res ; 113(3): 335-346, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36883802

RESUMO

The sugarcane giant borer, Telchin licus licus, is an insect pest that causes significant losses in sugarcane crops and in the sugar-alcohol sector. Chemical and manual control methods are not effective. As an alternative, in the current study, we have screened Bacillus thuringiensis (Bt) Cry toxins with high toxicity against this insect. Bioassays were conducted to determine the activity of four Cry toxins (Cry1A (a, b, and c) and Cry2Aa) against neonate T. licus licus larvae. Notably, the Cry1A family toxins had the lowest LC50 values, in which Cry1Ac presented 2.1-fold higher activity than Cry1Aa, 1.7-fold larger than Cry1Ab, and 9.7-fold larger than Cry2Aa toxins. In silico analyses were performed as a perspective to understand putative interactions between T. licus licus receptors and Cry1A toxins. The molecular dynamics and docking analyses for three putative aminopeptidase N (APN) receptors (TlAPN1, TlAPN3, and TlAPN4) revealed evidence for the amino acids that may be involved in the toxin-receptor interactions. Notably, the properties of Cry1Ac point to an interaction site that increases the toxin's affinity for the receptor and likely potentiate toxicity. The interacting amino acid residues predicted for Cry1Ac in this work are probably those shared by the other Cry1A toxins for the same region of APNs. Thus, the presented data extend the existing knowledge of the effects of Cry toxins on T. licus licus and should be considered in further development of transgenic sugarcane plants resistant to this major occurring insect pest in sugarcane fields.


Assuntos
Bacillus thuringiensis , Saccharum , Animais , Bacillus thuringiensis/química , Endotoxinas/farmacologia , Endotoxinas/toxicidade , Toxinas de Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis/farmacologia , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/toxicidade , Larva , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia
4.
J Agric Food Chem ; 71(4): 1921-1929, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36688912

RESUMO

Aedes aegypti and Culex quinquefasciatus are vectors of numerous diseases of worldwide public importance, such as arboviruses and filariasis. The main strategy for controlling these vectors is the use of chemicals, which can induce the appearance of resistant insects. The use of Bacillus thuringiensis (Bt) and Lysinibacillus sphaericus (Ls) with larvicidal activity against arboviral-transmitting insects has been successful in many studies. In contrast, the use and knowledge of peptides with insecticidal activity are so far scarce. In this work, 25 peptides and 5 strains of each bacterial species were prospected individually or together regarding their insecticidal activity. Initially, in vitro assays of cellular cytotoxicity of the peptides against SF21 cells of Spodoptera frugiperda were performed. The peptides Polybia-MPII and pelgipeptin caused 69 and 60% of cell mortality, respectively, at the concentration of 10 µM. Thus, they were evaluated in vivo against second-stage larvae of the two Culicidae. However, in the in vivo bioassays, only pelgipeptin showed larvicidal mortality against both larvae (LC50 6.40 µM against A. aegypti, and LC50 1.22 µM against C. quinquefasciatus). The toxin-producing bacterial strain that showed the lowest LC50 against A. aegypti was Bt S8 (LC50 = 0.71 ng/mL) and against C. quinquefasciatus, it was Ls S260 (LC50 = 2.32 ng/mL). So, the synergistic activity between the association of the bacterial toxins and pelgipeptin was evaluated. A synergic effect of pelgipeptin was observed with Ls strain S260 against C. quinquefasciatus. Our results demonstrate the possibility of synergistic or individual use of both biologically active larvicides against C. quinquefasciatus and A. aegypti.


Assuntos
Anopheles , Bacillaceae , Bacillus thuringiensis , Culex , Inseticidas , Animais , Anopheles/efeitos dos fármacos , Bacillaceae/química , Bacillus thuringiensis/química , Culex/efeitos dos fármacos , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Lipopeptídeos/farmacologia , Mosquitos Vetores , Vírus
5.
J Microbiol Methods ; 205: 106665, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36592897

RESUMO

Bacillus thuringiensis is an important bacterium of the group Bacillus cereus sensu lato due to its insecticidal properties. This microorganism has high genetic variability and its strains produce different Cry toxins, known as δ-endotoxins, which are mainly responsible for its toxic effect on insects that are agricultural pests or vector human diseases. Each strain can express a variety of cry genes, out of a total of 789 cry genes described so far. The detection of these genes is very important to characterize strains, as they may indicate their toxic potential. Several methods have been used to characterize B. thuringiensis strains, but one of the most common techniques is Polymerase Chain Reaction (PCR) from primers that detect the presence of cry genes. This technique has been optimized to make real-time multiplex quantitative PCR (qPCR) assays faster, more efficient, and safer, because the presence of three genes can be detected in a single reaction. In this work, a multiplex assay was developed to identify the presence of genes from the cry1A, cry1C, and cry1F families whose respective toxins are present in both bioinsecticides, and commercial transgenic plants used to control caterpillars. Specific primers were designed to identify the families of the cited genes and the system was validated with samples that were sequenced by next-generation sequencing (NGS). The system was implemented and used to characterize 214 strains. Of these, eight were submitted to conventional PCR, and the results matched, again validating the system. Thus, the application of the proposed technique allows the reliable evaluation through this system to detect the presence of the genes of the families cry1A, cry1C, and cry1F in samples of B. thuringiensis.


Assuntos
Bacillus thuringiensis , Inseticidas , Animais , Humanos , Bacillus thuringiensis/genética , Endotoxinas/genética , Toxinas de Bacillus thuringiensis , Reação em Cadeia da Polimerase em Tempo Real , Proteínas de Bactérias/genética , Proteínas Hemolisinas/genética
6.
Ciênc. rural (Online) ; 48(7): e20170712, 2018. tab
Artigo em Inglês | LILACS | ID: biblio-1045158

RESUMO

ABSTRACT: The cotton plant (Gossypium hirsutum) is affected by several diseases of economic importance, among them root-knot nematode (Meloidogyne incognita races 3 and 4). Methods to control this disease include the application of nematicides, solarization, deep plowing, crop rotation and use of antagonistic microorganisms. Among species of Bacillus, there are strains that act as bioregulators and antagonists of several pathogens. Tests to identify these strains are hampered by the difficulty of obtaining large populations of the pathogen and by the time of execution of the in vivo tests that should be conducted for about 90 days. The objective of this research was to compare the toxicity of B. thuringiensis strains to two nematodes, M. incognita and Caenorhabditis elegans, evaluating the possibility of using C. elegans as an indicator for the selection of strains with biocontrol potential against M. incognita. Therefore, the toxicity of nine B. thuringiensis strains on C. elegans and M. incognita was evaluated under laboratory and greenhouse conditions. Most strains toxic to C. elegans in vitro were also toxic to M. incognita, and three of them (S906, S1192, S2036) significantly reduced the populations of the two nematodes. The toxic effect of B. thuringiensis strains on C. elegans was like that reported for the same bacterial isolates on M. incognita in vivo. These results suggested that it is plausible to use C. elegans as an indicator of toxicity for selection of B. thuringiensis strains toxic to M. incognita.


RESUMO: O algodoeiro (Gossypium hirsutum) é acometido por várias doenças de importância econômica, dentre as quais a meloidoginose (Meloidogyne incognita raças 3 e 4). Entre os métodos de controle dessa doença, destacam-se as aplicações de nematicidas, a solarização, a aração profunda, a rotação de culturas e o uso de microrganismos antagonistas. Dentre as espécies do gênero Bacillus, existem estirpes que atuam como biorreguladores e antagonistas de vários patógenos. Os testes para identificação dessas estirpes são prejudicados pela dificuldade de se obter grandes populações do patógeno e pelo tempo de execução dos testes in vivo que devem ser conduzidos por cerca de 90 dias. Diante disso, o presente trabalho teve como objetivo comparar a toxicidade de estirpes de B. thuringiensis a dois nematoides, M. icognita e Caenorhabditis elegans, verificando a possibilidade de empregar C. elegans como indicador para a seleção de estirpes com potencial de biocontrole contra M. incognita. Para tanto, a toxicidade de nove estirpes de B. thuringiensis para C. elegans e M. incognita foi avaliada em laboratório e em casa de vegetação. A maioria das estirpes tóxicas ao C. elegans in vitro, também foi tóxica ao M. incognita, sendo que três delas (S906, S1192, S2036) reduziram significativamente as populações dos dois nematoides. O efeito tóxico apresentado pelas estirpes de B. thuringiensis contra C. elegans foram similares aos apresentados pelos mesmos isolados contra M. incognita in vivo. Esses resultados sugerem que é plausível o uso do C. elegans como indicador de toxicidade para seleção de estirpes de B. thuringiensis tóxicas a M. incognita.

7.
Biosci. j. (Online) ; 32(6): 1522-1536, nov./dec. 2016. tab, ilus
Artigo em Inglês | LILACS | ID: biblio-965794

RESUMO

Spodoptera frugiperda (SMITH, 1797) (Lepidoptera: Noctuidae) affects diverse crops of great economic interest, for instance, it can cause severe yield losses in maize, rice and sorghum. In this study, a selection and characterization of Bacillus thuringiensis (BERLINER, 1911) isolates with a high insecticidal activity against S. frugiperda was performed. Fifty-two crystal-forming B. thuringiensis isolates that were identified from 3384 Bacillus-like colonies were examined and screened by PCR for the presence cry genes (cry1, cry1Aa, cry1Ab, cry1Ac, cry1D, cry2 and cry2Ab). Four isolates that showed high toxicity towards S. frugiperda were shown to harbor cry2 genes. The crystals were analyzed by electron microscopy and showed bipyramidal and cuboidal shapes. Furthermore, these four isolates had lethal concentration (LC50) values of 44.5 ng/cm2 (SUFT01), 74.0 ng/cm2 (SUFT02), 89.0 ng/cm2 (SUFT03) and 108 ng/cm2 (SUFT 04) to neonate S. frugiperda larvae. An ultrastructural analysis of midgut cells from S. frugiperda incubated with the SUFT01 spore-crystal complex showed disruptions in cellular integrity and in the microvilli of the midgut columnar cells. The isolates characterized in this work are good candidates for the control of S. frugiperda, and could be used for the formulation of new bioinsecticides.


Spodoptera frugiperda (SMITH, 1797) (Lepidoptera: Noctuidae) afeta diversas culturas de grande interesse econômico, por exemplo, pode causar severas perdas em milho, arroz e sorgo. Neste estudo, foi realizada uma seleção e caracterização de isolados de Bacillus thuringiensis (BERLINER, 1911) com elevada atividade inseticida contra S. frugiperda. Cinquenta e dois isolados formadores de cristal B. thuringiensis que foram identificados a partir de 3384 colônias foram examinados e testados por PCR para a presença dos genes cry (cry1, cry1Aa, cry1Ab, cry1Ac, cry1D, cry2 e cry2Ab). Quatro isolados que apresentaram alta toxicidade contra S. frugiperda foram mostrados para abrigar os genes cry2. Os cristais foram analisados por microscopia eletrônica e mostraram formas bipiramidais e cúbicas. Os valores da concentração letal (CL50) destes quatro isolados foram de 44,5 ng / cm2 (SUFT01), 74,0 ng / cm2 (SUFT02), 89,0 ng / cm2 (SUFT03) e 108 ng / cm2 (suft 04) para larvas recém-eclodidas de S. frugiperda. Uma análise ultra-estrutural das células do intestino médio de S. frugiperda incubadas com complexo esporo-cristal do isolado SUFT01 mostrou rupturas na integridade celular e microvilosidades das células cilíndricas do intestino médio. Neste estudo, o alto nível de atividade inseticida de isolados os torna excelentes candidatos para o controlo de S. frugiperda, e pode proporcionar alternativas no controle destas populações de pragas, bem como a formação de novos bioinsecticidas.


Assuntos
Bacillus thuringiensis , Spodoptera , Inseticidas , Lepidópteros
8.
Toxins (Basel) ; 6(10): 2872-85, 2014 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-25268978

RESUMO

The insecticidal properties of Cry-endotoxins from Bacillus thuringiensis (Bt) have long been used as spore-crystals in commercial spray formulations for insect control. Recently, some Bt-endotoxin genes have been cloned in many different plants. Toxicological evaluations of three spore-crystal endotoxins, BtCry1Ia, BtCry10Aa and BtCry1Ba6 from B. thuringiensis, were carried out on mice to understand their adverse effects on hematological systems and on genetic material. These three spore-crystals have shown toxic activity to the boll weevil, which is one of the most aggressive pests of the cotton crop. Cry1Ia, Cry10Aa and Cry1Ba6 did not increase the micronucleus frequency in the peripheral erythrocytes of mice and did not cause changes in the frequency of polychromatic erythrocytes. However, some hematologic disburbances were observed, specifically related to Cry1Ia and Cry1Ba6, respectively, for the erythroid and lymphoid lineage. Thus, although the profile of such adverse side effects can be related to their high level of exposure, which is not commonly found in the environment, results showed that these Bt spore-crystals were not harmless to mice, indicating that each spore-crystal endotoxin presents a characteristic profile of toxicity and might be investigated individually.


Assuntos
Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/toxicidade , Dano ao DNA/efeitos dos fármacos , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proliferação de Células/efeitos dos fármacos , Endotoxinas/genética , Proteínas Hemolisinas/genética , Camundongos , Testes para Micronúcleos , Controle Biológico de Vetores , Testes de Toxicidade
9.
Appl Environ Microbiol ; 79(18): 5527-32, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23835175

RESUMO

Soil-transmitted helminths (hookworms, whipworms, and large roundworms) are agents of intestinal roundworm diseases of poverty that infect upwards of 2 billion people worldwide. A great challenge in treating these diseases is the development of anthelmintic therapeutics that are inexpensive, can be produced in great quantity, and are capable of delivery under varied and adverse environmental conditions. A potential solution to this challenge is the use of live bacteria that are acceptable for human consumption, e.g., Bacillus subtilis, and that can be engineered with therapeutic properties. In this study, we expressed the Bacillus thuringiensis anthelmintic protein Cry5B in a bacterial strain that has been used as a model for live bacterial therapy, Bacillus subtilis PY79. PY79 transformed with a Cry5B expression plasmid (PY79-Cry5B) is able to express Cry5B from the endogenous B. thuringiensis cry5B promoter. During sporulation of PY79-Cry5B, Cry5B is packaged as a crystal. Furthermore, Cry5B produced in PY79 is bioactive, with a 50% lethal concentration (LC50) of 4.3 µg/ml against the roundworm Caenorhabditis elegans. PY79-Cry5B was a significantly effective therapeutic in experimental Ancylostoma ceylanicum hookworm infections of hamsters. A single 10-mg/kg (0.071 µmol/kg of body weight) dose of Cry5B administered as a Cry5B-PY79 spore crystal lysate achieved a 93% reduction in hookworm burdens, which is superior on a molar level to reductions seen with clinically used anthelmintics. Given that a bacterial strain such as this one can be produced cheaply in massive quantities, our results demonstrate that the engineering and delivery of live bacterial strains have great potential to treat a significant contributor to poverty worldwide, namely, hookworm disease and other soil-transmitted helminthiasis.


Assuntos
Antibiose , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Terapia Biológica/métodos , Endotoxinas/metabolismo , Helmintíase/terapia , Proteínas Hemolisinas/metabolismo , Enteropatias/terapia , Animais , Bacillus subtilis/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Cricetinae , Modelos Animais de Doenças , Endotoxinas/genética , Proteínas Hemolisinas/genética , Enteropatias Parasitárias , Resultado do Tratamento
10.
PLoS One ; 7(9): e46121, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029407

RESUMO

Three members of the δ-endotoxin group of toxins expressed by Bacillus thuringiensis subsp. israelensis, Cyt2Ba, Cry4Aa and Cry11A, were individually expressed in recombinant acrystalliferous B. thuringiensis strains for in vitro evaluation of their toxic activities against insect and mammalian cell lines. Both Cry4Aa and Cry11A toxins, activated with either trypsin or Spodoptera frugiperda gastric juice (GJ), resulted in different cleavage patterns for the activated toxins as seen by SDS-PAGE. The GJ-processed proteins were not cytotoxic to insect cell cultures. On the other hand, the combination of the trypsin-activated Cry4Aa and Cry11A toxins yielded the highest levels of cytotoxicity to all insect cells tested. The combination of activated Cyt2Ba and Cry11A also showed higher toxic activity than that of toxins activated individually. When activated Cry4Aa, Cry11A and Cyt2Ba were used simultaneously in the same assay a decrease in toxic activity was observed in all insect cells tested. No toxic effect was observed for the trypsin-activated Cry toxins in mammalian cells, but activated Cyt2Ba was toxic to human breast cancer cells (MCF-7) when tested at 20 µg/mL.


Assuntos
Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/toxicidade , Dípteros/microbiologia , Endotoxinas/toxicidade , Lepidópteros/microbiologia , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Clonagem Molecular , Dípteros/citologia , Endotoxinas/genética , Expressão Gênica , Humanos , Lepidópteros/citologia
11.
Ecotoxicology ; 20(6): 1354-60, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21533653

RESUMO

Microbial pest control agents or entomopathogens have been considered an interesting alternative to use instead of chemical insecticides. Knowledge of ecotoxicity data is very important to predict the hazard of any product released in the environment and subsidize the regulation of these products by governmental agencies. In the present study four new Brazilian strains of Bacillus and one fungus were tested to evaluate their acute toxicity to the microcrustacean Daphnia similis, the snail Biomphalaria glabrata and the dung beetle Digitonthophagus gazella. The microcrustaceans and the snails were exposed to entomopathogens in synthetic softwater and the beetles were exposed directly in cattle dung. Obtained data reveal low susceptibility of the non-target species to tested microorganisms, with lethal concentrations being observed only at much higher concentrations than that effective against target insects. These results show that the tested strains are selective in their action mode and seem to be non-hazardous to non-target species.


Assuntos
Toxinas Bacterianas/toxicidade , Invertebrados/efeitos dos fármacos , Micotoxinas/toxicidade , Controle Biológico de Vetores , Animais , Brasil , Daphnia/efeitos dos fármacos , Insetos/efeitos dos fármacos , Caramujos/efeitos dos fármacos , Especificidade da Espécie
12.
Insect Biochem Mol Biol ; 40(2): 138-45, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20079436

RESUMO

Cry toxins from Bacillus thuringiensis (Bt) are used for insect control. They interact with specific receptors located on the host cell surface and are activated by host proteases following receptor binding resulting in midgut epithelial cells lysis. In this work we had cloned, sequenced and expressed a cry1Ba toxin gene from the B thuringiensis S601 strain which was previously shown to be toxic to Anthonomus grandis, a cotton pest. The Cry1Ba6 protein expressed in an acrystaliferous B. thuringiensis strain was toxic to A. grandis in bioassays. The binding of Cry1Ba6 toxin to proteins located in the midgut brush border membrane of A. grandis was analyzed and we found that Cry1Ba6 binds to two proteins (62 and 65kDa) that showed alkaline phosphatase (ALP) activity. This work is the first report that shows the localization of Cry toxin receptors in the midgut cells of A. grandis.


Assuntos
Fosfatase Alcalina/metabolismo , Bacillus thuringiensis/metabolismo , Toxinas Bacterianas/metabolismo , Besouros/enzimologia , Glicosilfosfatidilinositóis/metabolismo , Animais , Toxinas Bacterianas/genética , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Proteínas Recombinantes/metabolismo
13.
Ecotoxicology ; 18(1): 22-6, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18670879

RESUMO

The insecticidal properties of delta-endotoxins from Bacillus thuringiensis (Bt) serotypes kurstaki and israelensis and crystal proteins of Bacillus sphaericus (Bs) serotype H5 have been used in insect control for decades. The availability of microbial toxins in biopesticides as well as in plants with incorporated protection has been increasing the concerns about biosafety. Acute toxicity to Danio rerio and cytotoxicity on mouse bone marrow cells and peripheral erythrocytes of Oreochromis niloticus were tested with Bt israelensis, Bt kurstaki and Bs H5 strains. The concentration and dose tested were 10(6) and 10(8) spores/ml, respectively. Neither lethality nor effects on mouse bone marrow were promoted by any strain. In necrosis-apoptosis study on peripheral erythrocytes of O. niloticus an increased frequency of necrotic cells caused by exposure to strains of B. thuringiensis was found. Exposure to B. sphaericus did not show cytotoxic effects in either tested system. None of the strains studied induced apoptosis in contrast with the chemical controls.


Assuntos
Bacillus , Proteínas de Bactérias/toxicidade , Medula Óssea/efeitos dos fármacos , Ciclídeos , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Peixe-Zebra , Animais , Apoptose/efeitos dos fármacos , Bacillus thuringiensis , Toxinas de Bacillus thuringiensis , Eritrócitos/efeitos dos fármacos , Camundongos , Testes de Toxicidade Aguda
14.
Microb Biotechnol ; 2(4): 512-20, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21255282

RESUMO

The major biological pesticide for the control of insect infestations of crops, Bacillus thuringiensis was found to be present naturally within cotton plants from fields that had never been treated with commercial formulations of this bacterium. The ability of B. thuringiensis to colonize plants as an endophyte was further established by the introduction of a strain marked by production of green fluorescent protein (GFP). After inoculation of this preparation close to the roots of cotton and cabbage seedlings, GFP-marked bacteria could be re-isolated from all parts of the plant, having entered the roots and migrated through the xylem. Leaves taken from the treated plants were able to cause toxicity when fed to the Lepidoptera Spodoptera frugiperda (cotton) and Plutella xylostella (cabbage). These results open up new horizons for understanding the natural ecology and evolution of B. thuringiensis and use of B. thuringiensis in insect control.


Assuntos
Bacillus thuringiensis/fisiologia , Inseticidas/metabolismo , Plantas/microbiologia , Animais , Bacillus thuringiensis/crescimento & desenvolvimento , Bacillus thuringiensis/metabolismo , Brassica/microbiologia , Gossypium/microbiologia , Inseticidas/toxicidade , Lepidópteros/efeitos dos fármacos , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Análise de Sobrevida , Xilema/microbiologia
15.
Braz. j. microbiol ; 38(3): 531-537, July-Sept. 2007. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-464785

RESUMO

The control of the major sugarcane pest, Diatraea saccharalis, is limited by the stem location of the caterpillar. As part of a long-term project towards the development of an alternative and efficient delivery system of Cry proteins to control the sugarcane borer, the current work describes the selection and characterization of a Brazilian B. thuringiensis strain with prominent activity towards D. saccharalis. Strain S76 was eleven-fold more active than the HD-1 Lepidoptera-standard strain, as estimated by the LC50 of 13.06 mug/L and 143.88 mug/L, respectively. We observed bipiramidal and cuboidal crystals similar to those found in other B. thuringiensis strains with entomopathogenic activity against Lepidoptera and Diptera. In addition, smaller and spherical crystalline inclusions were also observed. The plasmid profile of strain S76 is similar to that of HD-1. PCR amplifications of S76 DNA using cry specific primers confirmed the presence of cry1Aa,cry1Ab,cry1Ac,cry2Aa1, and cry2Ab2, but not cry1Ad, cry2Ac and cry9 type genes. No differences that could explain the superior activity of S76 when compared to HD-1, the Lepidoptera standard strain, were observed. Nevertheless, its higher entomopathogenic activity has pointed this strain S76 as a potential source of cry genes to control sugarcane borer, an important pest that affects sugarcane, a crop that occupies a planted area of about 6 million ha in Brazil.


Diatraea saccharalis é o inseto-praga que provoca os maiores danos a cultura da cana-de-açúcar, e seu controle é limitado pela localização do ataque no interior do colmo das plantas. Como parte de um projeto a longo prazo com o objetivo de desenvolver uma alternativa eficiente para o controle da broca da cana utilizando as proteínas Cry de Bacillus thuringiensis, o presente trabalho descreve a seleção e caracterização de uma estirpe desta bactéria com atividade larvicida para D. saccharalis. A estirpe brasileira S76, foi selecionada pela alta atividade letal contra larvas da broca, dez vezes maior do que a estirpe comercial HD-1 de B. thuringiensis, com resultados da CL50 de 13.06 mug/L e 143.88 mug/L, respectivamente. Foram observados cristais bipiramidais e cuboides similares aos encontrados em outras estirpes de B. thuringiensis com atividade entomopatogenica para lepidópteros e dípteros. Adicionalmente, foram visualizadas pequenas inclusões cristalinas esféricas. O perfil plasmidial da estirpe S76 foi similar ao observado na estirpe HD-1. Amplificações por PCR confirmaram a presença dos genes cry1Aa,cry1Ab,cry1Ac,cry2Aa1 e cry2Ab2, porém não foram detectados os genes cry1Ad,cry2Ac e cry9 na estirpe S76. Não foi observada nenhuma diferença para explicar a maior atividade da estirpe S76 quando comparada a HD-1. Entretanto, os resultados indicam a estirpe S76 como fonte potencial de genes cry para controlar D. saccharalis, praga importante que afeta plantas de cana-de-açúcar, cultura esta que ocupa uma área plantada de 6 milhões ha no Brasil.


Assuntos
Bacillus thuringiensis , Toxinas Bacterianas , Técnicas In Vitro , Lepidópteros , Controle Biológico de Vetores , Saccharum , Métodos , Reação em Cadeia da Polimerase , Estudos de Amostragem
16.
FASEB J ; 21(14): 4112-20, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17646596

RESUMO

Highly pathogenic strains of Bacillus sphaericus produce the mosquitocidal Bin proteins, but resistance to this toxin can be produced under laboratory and field conditions. Analysis of strains able to overcome this resistance revealed the presence of a previously undescribed type of two-component toxin. One subunit, Cry48Aa1, is related to the 3-domain crystal toxins of Bacillus thuringiensis. Uniquely for this type of protein, insect toxicity is only achieved in the presence of a second, accessory protein, Cry49Aa1. This protein is itself related to both the binary toxin of B. sphaericus and to Cry35 and Cry36 of B. thuringiensis, none of which require interaction with Cry48Aa1-like proteins for their activity. The necessity for both Cry48Aa1 and Cry49Aa1 components for pathogenicity, therefore, indicates an unprecedented interaction to generate toxicity. Despite high potency for purified Cry48Aa1/Cry49Aa1 proteins (LC50 for third instar Culex quinquefasciatus larvae: 15.9 ng/ml and 6.3 ng/ml respectively), bacteria producing them show suboptimal mosquitocidal activity due to low-level Cry48Aa1 production. This new toxin combination may indicate a fortuitous combination of members of the gene families that encode 3-domain Cry toxins and Binary-like toxins, permitting the "mix-and-match" evolution of a new component in the mosquitocidal armoury.


Assuntos
Bacillus/química , Bacillus/patogenicidade , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/fisiologia , Toxinas Bacterianas/isolamento & purificação , Sequência de Aminoácidos , Animais , Bacillus/genética , Bacillus thuringiensis/patogenicidade , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Culex/microbiologia , Endotoxinas/química , Endotoxinas/genética , Endotoxinas/fisiologia , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/fisiologia , Dados de Sequência Molecular
17.
Appl Environ Microbiol ; 70(11): 6657-64, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15528531

RESUMO

Thirty-three strains of Brevibacillus laterosporus, including three novel strains isolated from Brazilian soil samples, were examined for genetic variability by the use of different PCR-based methods. Molecular markers that could characterize bacterial strains with regards to their pathogenic potential were investigated. In addition, toxicity was assessed by the use of insects belonging to the orders Lepidoptera and Coleoptera and the mollusk Biomphalaria glabrata. Among the targets tested, Biomphalaria glabrata demonstrated the highest degree of sensitivity to B. laterosporus, with some strains inducing 90 to 100% mortality in snails aged 3 and 12 days posteclosion. Larvae of the coleopteron Anthonomus grandis were also susceptible, presenting mortality levels of between 33 and 63%. Toxicity was also noted towards the lepidopteron Anticarsia gemmatalis. In contrast, no mortality was recorded among test populations of Tenebrio molitor or Spodoptera frugiperda. The application of intergenic transcribed spacer PCR and BOX-PCR generated 15 and 17 different genotypes, respectively. None of the molecular techniques allowed the identification of a convenient marker that was associated with any entomopathogenic phenotype. However, a 1,078-bp amplicon was detected for all strains of B. laterosporus when a primer for amplification of the BOXA1R region was used. Similarly, a 900-bp amplicon was generated from all isolates by use of the primer OPA-11 for randomly amplified polymorphic DNA analysis. These amplicons were not detected for other phenotypically related Brevibacillus species, indicating that they represent markers that are specific for B. laterosporus, which may prove useful for the isolation and identification of new strains of this species.


Assuntos
Bacillus/classificação , Bacillus/genética , Variação Genética , Controle Biológico de Vetores , Animais , Bacillus/crescimento & desenvolvimento , Biomphalaria/crescimento & desenvolvimento , Besouros/crescimento & desenvolvimento , DNA Espaçador Ribossômico/análise , Marcadores Genéticos , Larva/crescimento & desenvolvimento , Lepidópteros/crescimento & desenvolvimento , Reação em Cadeia da Polimerase , Técnica de Amplificação ao Acaso de DNA Polimórfico , Esporos Bacterianos/crescimento & desenvolvimento
18.
Biosci Biotechnol Biochem ; 68(6): 1235-42, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15215586

RESUMO

The cotton boll weevil (Anthonomus grandis) causes severe cotton crop losses in North and South America. This report describes the presence of cysteine proteinase activity in the cotton boll weevil. Cysteine proteinase inhibitors from different sources were assayed against total A. grandis proteinases but, unexpectedly, no inhibitor tested was particularly effective. In order to screen for active inhibitors against the boll weevil, a cysteine proteinase cDNA (Agcys1) was isolated from A. grandis larvae using degenerate primers and rapid amplification of cDNA ends (RACE) techniques. Sequence analysis showed significant homologies with other insect cysteine proteinases. Northern blot analysis indicated that the mRNA encoding the proteinase was transcribed mainly in the gut of larvae. No mRNA was detected in neonatal larvae, pupae, or in the gut of the adult insect, suggesting that Agcys1 is an important cysteine proteinase for larvae digestion. The isolated gene will facilitate the search for highly active inhibitors towards boll weevil larvae that may provide a new opportunity to control this important insect pest.


Assuntos
Cisteína Endopeptidases/genética , Gorgulhos/enzimologia , Animais , Sequência de Bases , Clonagem Molecular , Inibidores de Cisteína Proteinase , DNA Complementar , Larva/enzimologia , Larva/genética , Dados de Sequência Molecular , RNA Mensageiro/análise , Alinhamento de Sequência , Distribuição Tecidual , Gorgulhos/genética
19.
Rev. saúde Dist. Fed ; 8(1): 17-21, jan.-mar. 1997. tab, graf
Artigo em Português | LILACS | ID: lil-211726

RESUMO

A eficacia de dois inseticidas biologicos a base de Bacillus sphaericus e Bacillus thuringiensis foi comparada a do inseticida quimico Abate, um organofosforado a base de Temefos, utilizado sistematicamente no controle de mosquitos na area urbana de Brasilia. O trabalho foi realizado pelo Nucleo de Controle de Vetores do Instituto de Saude do Distrito Federal em cooperacao com o Centro Nacional de Pesquisa de Recursos Geneticos e Biotecnologia (CENARGEN). Os tres produtos apresentaram resultados satisfatorios, reduzindo a densidade de larvas nos criadouros. Entretanto, no decimo quinto dia de avaliacao do experimento, os criadouros tratados com B. sphaericus continuavam apresentando baixo numero de larvas, indicando persistir mais tempo que os outros dois produtos (Au);


Assuntos
Bacillus thuringiensis , Controle de Mosquitos , Controle de Mosquitos/instrumentação , Controle de Mosquitos/tendências , Controle Biológico de Vetores/métodos , Controle Biológico de Vetores/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...