Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 237(5): 2528-2538, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35315069

RESUMO

Increasing the efficiency of farm animal reproduction is necessary to reduce the environmental impact of food production systems. One approach is to increase the number of healthy eggs (oocytes) produced per female for fertilization, thus it is important to understand factors that decrease oocyte health. One paracrine factor that decreases ovarian follicle growth is fibroblast growth factor 18 (FGF18) secreted by cells in the theca layer of the ovarian follicle, however the factors that regulate FGF18 secretion are unknown. In this study we hypothesized that FGF18 secretion is controled by intrafollicular factors and is linked to fertility, which we tested by using cell culture and sheep genetic models in vivo. Separation of theca cell populations revealed that FGF18 messenger RNA (mRNA) is located mainly in thecal endothelial rather than endocrine cells, and immunohistochemistry localized FGF18 protein to microvessels in the theca layer in situ. Culture of ovine theca-derived endothelial cells was used to demonstrate stimulation of FGF18 mRNA and protein abundance by bone morphogenetic protein 4 (BMP4), a growth factor derived from theca endocrine cells. Taking advantage of a sheep genetic model, we demonstrate reduced ovarian and peripheral FGF18 concentrations in the hyperprolific Booroola ewe harboring the FecBB mutation in BMPR1B. These data suggest a novel control of fertility by follicular endothelial cells, in which theca endocrine cells secrete BMP4 that stimulates the secretion of FGF18 from thecal endothelial cells, which in turn diffuses into the granulosa cell layer and promotes apoptosis.


Assuntos
Células Endoteliais , Células Tecais , Animais , Células Endoteliais/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Células da Granulosa/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ovinos , Células Tecais/metabolismo
2.
Genes (Basel) ; 12(6)2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207147

RESUMO

From fetal life until senescence, the ovary is an extremely active tissue undergoing continuous structural and functional changes. These ever-changing events are best summarized by a quotation attributed to Plato when describing motion in space and time-'nothing ever is but is always becoming…'. With respect to the ovary, these changes include, at the beginning, the processes of follicular formation and thereafter those of follicular growth and atresia, steroidogenesis, oocyte maturation, and decisions relating to the number of mature oocytes that are ovulated for fertilization and the role of the corpus luteum. The aims of this review are to offer some examples of these complex and hitherto unknown processes. The ones herein have been elucidated from studies undertaken in vitro or from normal in vivo events, natural genetic mutations or after experimental inactivation of gene function. Specifically, this review offers insights concerning the initiation of follicular growth, pathologies relating to poly-ovular follicles, the consequences of premature loss of germ cells or oocytes loss, the roles of AMH (anti-Müllerian hormone) and BMP (bone morphogenetic protein) genes in regulating follicular growth and ovulation rate together with species differences in maintaining luteal function during pregnancy. Collectively, the evidence suggests that the oocyte is a key organizer of normal ovarian function. It has been shown to influence the phenotype of the adjacent somatic cells, the growth and maturation of the follicle, and to determine the ovulation rate. When germ cells or oocytes are lost prematurely, the ovary becomes disorganized and a wide range of pathologies may arise.


Assuntos
Ovário/fisiologia , Animais , Evolução Biológica , Feminino , Humanos , Oogênese , Ovário/citologia , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Ovulação
3.
Animals (Basel) ; 11(5)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925800

RESUMO

The relationships between changes in anti-Müllerian hormone (AMH) concentration and various traits, including milk somatic cell counts (SCC), were evaluated. Blood samples were collected from 43 Holstein cows 14 days before (D-14) and 10 (D10) and 28 days after (D28) parturition, and vaginal discharge score (VDS) and polymorphonuclear leukocyte (PMNL) percentages were assessed in endometrial samples at D28. Cows were separated into four quartiles (Q1-Q4) based on changes in AMH concentration during the peripartum period (AMH ratio: D28/D-14). Correlations between AMH ratio and each parameter were evaluated and classified into high-AMH (Q4, 1.83 ± 0.12, n = 11) and low-AMH (Q1, 0.83 ± 0.05, n = 11) groups. The AMH ratio was positively correlated with magnesium and non-esterified fatty acids levels, and the albumin/globulin ratio at D10 and D28, but negatively correlated with serum amyloid A (SAA) at D10. SAA and γ-globulin levels were significantly higher in the low-AMH group at D28. There was no significant difference in VDS, PMNL percentage, and milk SCC between the two groups. The decreasing AMH ratio from the prepartum to the postpartum period corresponds to high inflammation biomarker levels. Whether it subsequently affects the reproductive prognosis of postpartum cows needs further investigations.

4.
Nat Commun ; 12(1): 1064, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594056

RESUMO

Polycystic ovary syndrome (PCOS) is characterized by an oligo-anovulation, hyperandrogenism and polycystic ovarian morphology combined with major metabolic disturbances. However, despite the high prevalence and the human and economic consequences of this syndrome, its etiology remains unknown. In this study, we show that female Goto-Kakizaki (GK) rats, a type 2 diabetes mellitus model, encapsulate naturally all the reproductive and metabolic hallmarks of lean women with PCOS at puberty and in adulthood. The analysis of their gestation and of their fetuses demonstrates that this PCOS-like phenotype is developmentally programmed. GK rats also develop features of ovarian hyperstimulation syndrome. Lastly, a comparison between GK rats and a cohort of women with PCOS reveals a similar reproductive signature. Thus, this spontaneous rodent model of PCOS represents an original tool for the identification of the mechanisms involved in its pathogenesis and for the development of novel strategies for its treatment.


Assuntos
Síndrome do Ovário Policístico/patologia , Adiposidade , Animais , Animais Recém-Nascidos , Peso Corporal , Análise Discriminante , Modelos Animais de Doenças , Dislipidemias/patologia , Sistema Endócrino/patologia , Ciclo Estral , Feminino , Teste de Tolerância a Glucose , Gonadotropinas/farmacologia , Hormônios/sangue , Humanos , Secreção de Insulina , Análise dos Mínimos Quadrados , Lipídeos/química , Masculino , Troca Materno-Fetal , Análise Multivariada , Ovário/patologia , Ovário/fisiopatologia , Fenótipo , Síndrome do Ovário Policístico/sangue , Síndrome do Ovário Policístico/fisiopatologia , Gravidez , Ratos Wistar , Reprodução , Maturidade Sexual
5.
J Clin Endocrinol Metab ; 106(3): e1271-e1289, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33247926

RESUMO

PURPOSE: A protective effect of anti-Müllerian hormone (AMH) on follicle atresia was recently demonstrated using long-term treatments, but this effect has never been supported by mechanistic studies. This work aimed to gain an insight into the mechanism of action of AMH on follicle atresia and on how this could account for the increased follicle pool observed in women with polycystic ovary syndrome (PCOS). METHODS: In vivo and in vitro experiments were performed to study the effects of AMH on follicle atresia and on the proliferation and apoptosis of granulosa cells (GCs). RNA-sequencing was carried out to identify new AMH target genes in GCs. The expression of some of these genes in GCs from control and PCOS women was compared using microfluidic real time quantitative RT-PCR. RESULTS: A short-term AMH treatment prevented follicle atresia in prepubertal mice. Consistent with this result, AMH inhibited apoptosis and promoted proliferation of different models of GCs. Moreover, integrative biology analyses of 965 AMH target genes identified in 1 of these GC models, confirmed that AMH had initiated a gene expression program favoring cell survival and proliferation. Finally, on 43 genes selected among the most up- and down-regulated AMH targets, 8 were up-regulated in GCs isolated from PCOS women, of which 5 are involved in cell survival. MAIN CONCLUSIONS: Our results provide for the first time cellular and molecular evidence that AMH protects follicles from atresia by controlling GC survival and suggest that AMH could participate in the increased follicle pool of PCOS patients.


Assuntos
Hormônio Antimülleriano/farmacologia , Apoptose , Células da Granulosa/efeitos dos fármacos , Síndrome do Ovário Policístico/patologia , Adulto , Animais , Hormônio Antimülleriano/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Estudos de Casos e Controles , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células da Granulosa/patologia , Células da Granulosa/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo
6.
J Reprod Dev ; 66(6): 593-598, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-32938834

RESUMO

We evaluated the relationship between plasma anti-Müllerian hormone (AMH) concentrations in Japanese Black (JB) heifers at 7-10 months of age and the number of embryos recovered after superovulation treatment in selected ovum pick-up donors, concomitantly with changes in their AMH concentrations before and after parturition. Plasma AMH concentrations in heifers were positively correlated with the total number of follicles (r = 0.647, P < 0.01) and embryos (r = 0.681, P < 0.01) recovered from the animals postpartum, when selected as donor cows, but did not correlate with the total number of transferable embryos. No difference was observed between the plasma AMH concentration at the heifer period and the postpartum period. Additionally, serum AMH concentrations of heifers weakly correlated with the number of follicles and embryos recovered by virgin flush after superovulation treatment at 13-15 months of age. Therefore, a single blood AMH concentration measurement may accelerate intensive JB cattle breeding.


Assuntos
Criação de Animais Domésticos , Hormônio Antimülleriano/sangue , Cruzamento/métodos , Transferência Embrionária/veterinária , Fertilização in vitro/veterinária , Animais , Bovinos , Técnicas de Cultura Embrionária/veterinária , Embrião de Mamíferos , Feminino , Oócitos , Óvulo/fisiologia , Superovulação
7.
Mol Cell Endocrinol ; 518: 110877, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32569857

RESUMO

The reproductive neuroendocrine axis, or hypothalamo-pituitary-gonadal (HPG) axis, is a paragon of complex biological system involving numerous cell types, spread over several anatomical levels communicating through entangled endocrine feedback loops. The HPG axis exhibits remarkable dynamic behaviors on multiple time and space scales, which are an inexhaustible source of studies for mathematical and computational biology. In this review, we will describe a variety of modeling approaches of the HPG axis from a cellular endocrinology viewpoint. We will in particular investigate the questions raised by some of the most striking features of the HPG axis: (i) the pulsatile secretion of hypothalamic and pituitary hormones, and its counterpart, the cell signaling induced by frequency-encoded hormonal signals, and (ii) the dual, gametogenic and glandular function of the gonads, which relies on the tight control of the somatic cell populations ensuring the proper maturation and timely release of the germ cells.


Assuntos
Células Endócrinas/fisiologia , Gônadas/citologia , Sistema Hipotálamo-Hipofisário/citologia , Modelos Teóricos , Sistema Hipófise-Suprarrenal/citologia , Animais , Células Endócrinas/citologia , Endocrinologia/métodos , Feminino , Gônadas/fisiologia , Humanos , Sistema Hipotálamo-Hipofisário/fisiologia , Masculino , Sistema Hipófise-Suprarrenal/fisiologia , Reprodução/fisiologia , Transdução de Sinais/fisiologia
8.
Biol Reprod ; 103(3): 572-582, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32432313

RESUMO

In this study, we aimed to determine the origin of the difference, in terms of anti-Müllerian hormone production, existing between the bovine and porcine ovaries. We first confirmed by quantitative real-time-Polymerase-Chain Reaction, ELISA assay and immunohistochemistry that anti-Müllerian hormone mRNA and protein production are very low in porcine ovarian growing follicles compared to bovine ones. We then have transfected porcine and bovine granulosa cells with vectors containing the luciferase gene driven by the porcine or the bovine anti-Müllerian hormone promoter. These transfection experiments showed that the porcine anti-Müllerian hormone promoter is less active and less responsive to bone morphogenetic protein stimulations than the bovine promoter in both porcine and bovine cells. Moreover, bovine but not porcine granulosa cells were responsive to bone morphogenetic protein stimulation after transfection of a plasmidic construction including a strong response element to the bone morphogenetic proteins (12 repetitions of the GCCG sequence) upstream of the luciferase reporter gene. We also showed that SMAD6, an inhibitor of the SMAD1-5-8 pathway, is strongly expressed in porcine compared to the bovine granulosa cells. Overall, these results suggest that the low expression of anti-Müllerian hormone in porcine growing follicles is due to both a lack of activity/sensitivity of the porcine anti-Müllerian hormone promoter, and to the lack of responsiveness of porcine granulosa cells to bone morphogenetic protein signaling, potentially due to an overexpression of SMAD6 compared to bovine granulosa cells. We propose that the low levels of anti-Müllerian hormone in the pig would explain the poly-ovulatory phenotype in this species.


Assuntos
Hormônio Antimülleriano/biossíntese , Células da Granulosa/metabolismo , Ovário/metabolismo , Animais , Hormônio Antimülleriano/genética , Proteínas Morfogenéticas Ósseas/biossíntese , Bovinos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Ovário/citologia , Regiões Promotoras Genéticas , Transdução de Sinais/efeitos dos fármacos , Proteína Smad6/biossíntese , Proteína Smad6/genética , Especificidade da Espécie , Suínos
9.
Cells ; 9(4)2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316494

RESUMO

Sexual reproduction requires the fertilization of a female gamete after it has undergone optimal development. Various aspects of oocyte development and many molecular actors in this process are shared among mammals, but phylogeny and experimental data reveal species specificities. In this chapter, we will present these common and distinctive features with a focus on three points: the shaping of the oocyte transcriptome from evolutionarily conserved and rapidly evolving genes, the control of folliculogenesis and ovulation rate by oocyte-secreted Growth and Differentiation Factor 9 and Bone Morphogenetic Protein 15, and the importance of lipid metabolism.


Assuntos
Evolução Biológica , Expressão Gênica/genética , Oócitos/crescimento & desenvolvimento , Animais , Feminino , Mamíferos
10.
Sci Rep ; 10(1): 4992, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32193429

RESUMO

Breast Cancer Anti-estrogen Resistance 4 (BCAR4) was previously characterised in bovine species as a gene preferentially expressed in oocytes, whose inhibition is detrimental to in vitro embryo development. But its role in oogenesis, folliculogenesis and globally fertility in vivo remains unknown. Because the gene is not conserved in mice, rabbits were chosen for investigation of BCAR4 expression and function in vivo. BCAR4 displayed preferential expression in the ovary compared to somatic organs, and within the ovarian follicle in the oocyte compared to somatic cells. The transcript was detected in follicles as early as the preantral stage. Abundance decreased throughout embryo development until the blastocyst stage. A lineage of genome-edited rabbits was produced; BCAR4 expression was abolished in follicles from homozygous animals. Females of wild-type, heterozygous and homozygous genotypes were examined for ovarian physiology and reproductive parameters. Follicle growth and the number of ovulations in response to hormonal stimulation were not significantly different between genotypes. Following insemination, homozygous females displayed a significantly lower delivery rate than their heterozygous counterparts (22 ± 7% vs 71 ± 11% (mean ± SEM)), while prolificacy was 1.8 ± 0.7 vs 6.0 ± 1.4 kittens per insemination. In conclusion, BCAR4 is not essential for follicular growth and ovulation but it contributes to optimal fertility in rabbits.


Assuntos
Desenvolvimento Embrionário/genética , Fertilidade/genética , Edição de Genes , Folículo Ovariano/fisiologia , RNA Longo não Codificante/fisiologia , Animais , Feminino , Expressão Gênica , Folículo Ovariano/metabolismo , Ovulação/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Coelhos
11.
Cell Mol Life Sci ; 77(6): 1177-1196, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31327046

RESUMO

In mammalian ovaries, the theca layers of growing follicles are critical for maintaining their structural integrity and supporting androgen synthesis. Through combining the postnatal monitoring of ovaries by abdominal magnetic resonance imaging, endocrine profiling, hormonal analysis of the follicular fluid of growing follicles, and transcriptomic analysis of follicular theca cells, we provide evidence that the exposure of ovine fetuses to testosterone excess activates postnatal follicular growth and strongly affects the functions of follicular theca in adulthood. Prenatal exposure to testosterone impaired androgen synthesis in the small antral follicles of adults and affected the expression in their theca cells of a wide array of genes encoding extracellular matrix components, their membrane receptors, and signaling pathways. Most expression changes were uncorrelated with the concentrations of gonadotropins, steroids, and anti-Müllerian hormone in the recent hormonal environment of theca cells, suggesting that these changes rather result from the long-term developmental effects of testosterone on theca cell precursors in fetal ovaries. Disruptions of the extracellular matrix structure and signaling in the follicular theca and ovarian cortex can explain the acceleration of follicle growth through altering the stiffness of ovarian tissue. We propose that these mechanisms participate in the etiology of the polycystic ovarian syndrome, a major reproductive pathology in woman.


Assuntos
Síndrome do Ovário Policístico/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Testosterona/metabolismo , Células Tecais/metabolismo , Animais , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Folículo Ovariano/citologia , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/metabolismo , Síndrome do Ovário Policístico/genética , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Ovinos , Células Tecais/citologia , Células Tecais/ultraestrutura
12.
J Reprod Dev ; 65(4): 369-374, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30930424

RESUMO

In this study, we evaluated the efficiency of a single measurement of plasma anti-Müllerian hormone (AMH) concentration in heifers in determining the number of oocytes recoverable by ovum pick-up (OPU), and compared AMH concentrations among sister heifers from the same parents. For this, blood samples from 50 embryo-transfer-derived female Japanese Black (JB) heifers (mean: 8.7 age in months) were collected and plasma AMH concentration was measured. At 13-15 months of age, both the number of follicles (2-9 mm) and the number of collected oocytes after OPU were counted and compared. Results indicated that the heifers with the highest AMH concentration had the highest number of follicles in their ovaries and gave the highest number of collected oocytes with OPU, thereby indicating that a single measurement of plasma AMH concentration is informative for the selection of OPU-donor heifers in herd breeding programs. The practice of performing a single AMH measurement may accelerate the intensive breeding of JB herds.


Assuntos
Hormônio Antimülleriano/sangue , Cruzamento , Bovinos , Seleção do Doador/métodos , Recuperação de Oócitos , Animais , Hormônio Antimülleriano/análise , Análise Química do Sangue/métodos , Análise Química do Sangue/veterinária , Cruzamento/métodos , Contagem de Células , Transferência Embrionária/métodos , Transferência Embrionária/veterinária , Feminino , Japão , Masculino , Recuperação de Oócitos/métodos , Recuperação de Oócitos/veterinária , Oócitos/citologia , Valor Preditivo dos Testes , Superovulação/sangue
13.
Trends Endocrinol Metab ; 29(6): 400-419, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29706485

RESUMO

Primary ovarian insufficiency (POI) affects ∼1% of women before 40 years of age. The recent leap in genetic knowledge obtained by next generation sequencing (NGS) together with animal models has further elucidated its molecular pathogenesis, identifying novel genes/pathways. Mutations of >60 genes emphasize high genetic heterogeneity. Genome-wide association studies have revealed a shared genetic background between POI and reproductive aging. NGS will provide a genetic diagnosis leading to genetic/therapeutic counseling: first, defects in meiosis or DNA repair genes may predispose to tumors; and second, specific gene defects may predict the risk of rapid loss of a persistent ovarian reserve, an important determinant in fertility preservation. Indeed, a recent innovative treatment of POI by in vitro activation of dormant follicles proved to be successful.


Assuntos
Insuficiência Ovariana Primária/genética , Adulto , Feminino , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação/genética
14.
Anim Reprod ; 15(Suppl 1): 635-647, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-36249842

RESUMO

A reserve of primordial follicles is set up in the ovaries of fetuses or neonates, depending on the species, and serves as the source of developing follicles throughout the reproductive lifespan. This review focuses on the cellular and molecular mechanisms currently known to control the establishment of this reserve, and their regulation by environmental factors. Most mutations in genes controlling germ cell proliferation and survival, meiosis or follicle assembly lead to the absence of primordial follicles or a sharp reduction in their number, incompatible with fertility in adults. Inadequate maternal nutrition affects the cellular metabolism, increases the oxidative stress and delays follicle formation in fetal ovaries. Despite the existence of compensation mechanisms of some developmental processes, the early-life nutritional environment imprints the long-term ability of follicles to enter growth and develop in adult ovaries. However, maternal undernutrition, overfeeding or high-fat diet during the establishment of the ovarian reserve does not seem to affect the fertility of the female offspring, unless their metabolism or neuroendocrine status is altered. Exposure of fetal or neonatal ovaries to excess steroids inhibits or stimulates follicle formation in a complex manner depending on the nature of the steroid, the dose and the animal species. Estrogens can control follicle formation through intra-ovarian mechanisms involving members of the TGF-beta family such as activin and BMP2. Early-life exposure to synthetic estrogens or environmental pollutants with estrogen-like activity impairs meiotic progression and follicle assembly, and affects long-term primordial follicle activation in adult ovaries. The effects of compounds with estrogen-like activity on the ovarian reserve can be transmitted to several generations through the female germline. Further investigations are needed to establish the early-life effects of the environmental factors on the female reproductive lifespan and decipher the mechanisms of their epigenetic effects on the size and quality of the ovarian reserve.

15.
J Clin Endocrinol Metab ; 102(11): 3970-3978, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28938480

RESUMO

Context: Anti-Müllerian hormone (AMH) and AMH type II receptor (AMHR2) are overexpressed in granulosa cells (GCs) from women with polycystic ovary syndrome (PCOS), the most common cause of female infertility. Objective: The aim of the study was to compare the regulation of the AMH/AMHR2 system by 5α-dihydrotestosterone (5α-DHT) and estradiol (E2) in GCs from control subjects and women with PCOS. Design, Setting, Patients: Experiments were performed on follicular fluids (FF) and GCs from women undergoing in vitro fertilization. Main Outcome Measures: FF steroid levels were measured by mass spectrometry, and messenger RNA (mRNA) accumulation was quantified by reverse transcription real-time polymerase chain reaction. Results: Total testosterone (T), free T, and 5α-DHT FF levels were significantly higher (P < 0.001) in women with PCOS than in controls. However, E2 and sex hormone-binding globulin concentrations were comparable between the two groups. In GCs from control women, the AMH and AMHR2 expression were not affected by 5α-DHT treatment, whereas AMH mRNA levels were upregulated by 5α-DHT in GCs from patients with PCOS (2.3-fold, P < 0.01) overexpressing the androgen receptor (1.4-fold, P < 0.05). E2 downregulated the AMH and AMHR2 expression in GCs from control women (1.4-fold, P < 0.001 and 1.8-fold, P < 0.01, respectively) but had no effect on these genes in GCs from women with PCOS. This differential effect of E2 was associated with a higher estrogen receptor 1 expression in GCs from women with PCOS (1.9-fold, P < 0.05). Conclusions: In GCs from women with PCOS, the regulation of AMH and AMHR2 expression is altered in a way that promotes the overexpression of the AMH/AMHR2 system, and could contribute to the follicular arrest observed in these patients.


Assuntos
Hormônio Antimülleriano/genética , Di-Hidrotestosterona/farmacologia , Estradiol/farmacologia , Síndrome do Ovário Policístico/genética , Receptores de Peptídeos/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Adulto , Hormônio Antimülleriano/metabolismo , Estudos de Casos e Controles , Di-Hidrotestosterona/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Fase Folicular/efeitos dos fármacos , Fase Folicular/genética , Fase Folicular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Humanos , Síndrome do Ovário Policístico/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores de Peptídeos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Adulto Jovem
16.
Reproduction ; 153(5): 493-508, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28154111

RESUMO

In this study, we systematically compared the morphological, functional and molecular characteristics of granulosa cells and oocytes obtained by a three-dimensional in vitro model of ovine ovarian follicular growth with those of follicles recovered in vivo Preantral follicles of 200 µm diameter were recovered and cultured up to 950 µm over a 20-day period. Compared with in vivo follicles, the in vitro culture conditions maintained follicle survival, with no difference in the rate of atresia. However, the in vitro conditions induced a slight decrease in oocyte growth rate, delayed antrum formation and increased granulosa cell proliferation rate, accompanied by an increase and decrease in CCND2 and CDKN1A mRNA expression respectively. These changes were associated with advanced granulosa cell differentiation in early antral follicles larger than 400 µm diameter, regardless of the presence or absence of FSH, as indicated by an increase in estradiol secretion, together with decreased AMH secretion and expression, as well as increased expression of GJA1, CYP19A1, ESR1, ESR2, FSHR, INHA, INHBA, INHBB and FST There was a decrease in the expression of oocyte-specific molecular markers GJA4, KIT, ZP3, WEE2 and BMP15 in vitro compared to that in vivo Moreover, a higher percentage of the oocytes recovered from cultured follicles 550 to 950 µm in diameter was able to reach the metaphase II meiosis stage. Overall, this in vitro model of ovarian follicle development is characterized by accelerated follicular maturation, associated with improved developmental competence of the oocyte, compared to follicles recovered in vivo.


Assuntos
Biomarcadores/metabolismo , Células da Granulosa/citologia , Técnicas de Maturação in Vitro de Oócitos , Oócitos/citologia , Oogênese/fisiologia , Folículo Ovariano/citologia , Animais , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Células da Granulosa/metabolismo , Técnicas In Vitro , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Ovinos
17.
Reproduction ; 153(4): 395-404, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28069901

RESUMO

Polymorphisms in the gene encoding bone morphogenetic protein 15 (BMP15) have been associated with multiple ovulations in sheep. As BMP15 regulates inhibin expression in rodents, we assumed that the ovarian inhibin/activin system could mediate part of the effect of BMP15 mutations in the regulation of ovulation rate in sheep. To answer this question, we have studied the effects of two natural loss-of-function mutations of BMP15 on the expression of components of this system. The FecXR and the FecXGr mutations, when present respectively in Rasa Aragonesa ewes at the heterozygous state and in Grivette ewes at the homozygous state, were associated with a twofold increase in ovulation rate. There were only small differences between mutant and wild-type ewes for mRNA expression of INHA, INHBA, ACVR1B, ACVR2A, FST or TGFBR3 in granulosa cells and inhibin A or activin A concentrations in follicular fluid. Moreover, the effects of mutations differed between breeds. In cultures of granulosa cells from wild-type ewes, BMP15, acting alone or in synergy with GDF9, stimulated INHA, INHBA and FST expression, but inhibited the expression of TGFBR3 Activin A did not affect INHBA expression, but inhibited the expression of ACVR2A also. The complexity of the inhibin/activin system, including positive and antagonistic elements, and the differential regulation of these elements by BMP15 and activin can explain that the effects of BMP15 mutations differ when present in different genetic backgrounds. In conclusion, the ovarian inhibin/activin system is unlikely to participate in the increase of ovulation rate associated with BMP15 mutations in sheep.


Assuntos
Ativinas/genética , Proteína Morfogenética Óssea 15/genética , Regulação da Expressão Gênica , Inibinas/genética , Mutação , Folículo Ovariano/fisiologia , Ovulação/genética , Animais , Células Cultivadas , Feminino , Genótipo , Células da Granulosa/citologia , Células da Granulosa/fisiologia , Fator 9 de Diferenciação de Crescimento/genética , Folículo Ovariano/citologia , Ovinos
18.
Physiol Genomics ; 49(2): 67-80, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27940565

RESUMO

Ovarian folliculogenesis corresponds to the development of follicles leading to either ovulation or degeneration, this latter process being called atresia. Even if atresia involves apoptosis, its mechanism is not well understood. The objective of this study was to analyze global gene expression in pig granulosa cells of ovarian follicles during atresia. The transcriptome analysis was performed on a 9,216 cDNA microarray to identify gene networks and candidate genes involved in pig ovarian follicular atresia. We found 1,684 significantly regulated genes to be differentially regulated between small healthy follicles and small atretic follicles. Among them, 287 genes had a fold-change higher than two between the two follicle groups. Eleven genes (DKK3, GADD45A, CAMTA2, CCDC80, DAPK2, ECSIT, MSMB, NUPR1, RUNX2, SAMD4A, and ZNF628) having a fold-change higher than five between groups could likely serve as markers of follicular atresia. Moreover, automatic confrontation of deregulated genes with literature data highlighted 93 genes as regulatory candidates of pig granulosa cell atresia. Among these genes known to be inhibitors of apoptosis, stimulators of apoptosis, or tumor suppressors INHBB, HNF4, CLU, different interleukins (IL5, IL24), TNF-associated receptor (TNFR1), and cytochrome-c oxidase (COX) were suggested as playing an important role in porcine atresia. The present study also enlists key upstream regulators in follicle atresia based on our results and on a literature review. The novel gene candidates and gene networks identified in the current study lead to a better understanding of the molecular regulation of ovarian follicular atresia.


Assuntos
Atresia Folicular/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Folículo Ovariano/metabolismo , Sus scrofa/genética , Animais , Apoptose/genética , Biomarcadores/metabolismo , Análise por Conglomerados , Regulação para Baixo/genética , Feminino , Ontologia Genética , Transdução de Sinais/genética , Regulação para Cima/genética
19.
Theriogenology ; 86(1): 41-53, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27155734

RESUMO

This review focuses on the role of the dialog between the oocyte and its companion somatic cells in driving folliculogenesis from the primordial to the preovulatory follicle stage. Mouse and sheep genetic models have brought complementary evidence of these cell interactions and their consequences for ovarian function. In mouse, the deletion of genes encoding connexins has shown that functional gap junction channels between oocytes and granulosa cells and between granulosa cells themselves maintain the follicle in a functionally integrated state. Targeted deletions in oocytes or granulosa cells have revealed the cell- and stage-specific role of ubiquist factors belonging to the phosphatidylinositol 3 kinase signaling pathway in primordial follicle activation, oocyte growth and follicle survival. Various models of transgenic mice and sheep carrying natural loss-of-function mutations associated with sterility have established that the oocyte-derived factors, bone morphogenetic protein (BMP) 15 and growth differentiation factor 9 orchestrate follicle development, support cumulus metabolism and maturation and participate in oocyte meiosis arrest. Unexpectedly in sheep, mutations resulting in the attenuation of BMP signaling lead to enhanced ovulation rate, likely resulting from a lowered follicular atresia rate and the enhancement of FSH-regulated follicular maturation. Both the activation level of BMP signaling and an adequate equilibrium between BMP15 and growth differentiation factor 9 determine follicle survival, maturation, and development toward ovulation. The physiological approaches which were implemented on genetic animal models during the last 20 years have opened up new perspectives for female fertility by identifying the main signaling pathways of the oocyte-somatic cell dialog.


Assuntos
Modelos Biológicos , Oócitos/fisiologia , Folículo Ovariano/citologia , Folículo Ovariano/fisiologia , Animais , Feminino
20.
J Clin Endocrinol Metab ; 101(6): 2602-11, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27070094

RESUMO

CONTEXT: Anti-Müllerian hormone (AMH) is produced by the granulosa cells (GCs) of growing follicles and inhibits follicular development. OBJECTIVE: This study aimed to investigate the regulation of the AMH-specific type 2 receptor (AMHR2) gene expression in GCs by bone morphogenetic protein (BMP)15, BMP4 and growth differentiation factor (GDF)9. DESIGN, SETTING, AND PATIENTS: Their effects on AMHR2 and AMH mRNAs were studied in luteinized human GCs and in ovine GCs (oGCs) from small antral follicles. The effects of BMPs on human AMHR2 and AMH promoter reporter activities were analyzed in transfected oGCs. The in vivo effect of BMP15 on GCs AMHR2 and AMH expression was investigated by using Lacaune and Rasa Aragonesa hyperprolific ewes carrying loss-of-function mutations in BMP15. MAIN OUTCOME MEASURES: mRNAs were quantified by real-time RT-PCR. Promoter reporter constructs activities were quantified by the measurement of their luciferase activity. RESULTS: BMP15 and BMP4 enhanced AMHR2 and AMH expression in human GCs and in oGCs, whereas GDF9 had no effect. In oGCs, GDF9 increased BMP15 effect on AMH expression. Consistent with these results, BMP15 and BMP4, but not GDF9, enhanced AMHR2 promoter activity in oGCs, whereas GDF9 increased BMP15 effect on AMH promoter activity. Moreover, oGCs from both BMP15 mutant ewes had reduced AMHR2 mRNA levels but unchanged AMH expression compared with wild-type ewes. CONCLUSIONS: Altogether, these results suggest that the mechanisms of action of BMP15 on AMHR2 and AMH expression are different, and that by stimulating AMHR2 and AMH expression in GCs BMP15 enhances AMH inhibitory actions in GCs.


Assuntos
Proteína Morfogenética Óssea 15/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Receptores de Peptídeos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Regulação para Cima/efeitos dos fármacos , Adulto , Animais , Proteína Morfogenética Óssea 4/farmacologia , Feminino , Células da Granulosa/metabolismo , Fator 9 de Diferenciação de Crescimento/farmacologia , Humanos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Receptores de Peptídeos/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Ovinos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...