RESUMO
Aquatic ecosystems of the Bolivian Altiplano (â¼3800 m a.s.l.) are characterized by extreme hydro-climatic constrains (e.g., high UV-radiations and low oxygen) and are under the pressure of increasing anthropogenic activities, unregulated mining, agricultural and urban development. We report here a complete inventory of mercury (Hg) levels and speciation in the water column, atmosphere, sediment and key sentinel organisms (i.e., plankton, fish and birds) of two endorheic Lakes of the same watershed differing with respect to their size, eutrophication and contamination levels. Total Hg (THg) and monomethylmercury (MMHg) concentrations in filtered water and sediment of Lake Titicaca are in the lowest range of reported levels in other large lakes worldwide. Downstream, Hg levels are 3-10 times higher in the shallow eutrophic Lake Uru-Uru than in Lake Titicaca due to high Hg inputs from the surrounding mining region. High percentages of MMHg were found in the filtered and unfiltered water rising up from <1 to â¼50% THg from the oligo/hetero-trophic Lake Titicaca to the eutrophic Lake Uru-Uru. Such high %MMHg is explained by a high in situ MMHg production in relation to the sulfate rich substrate, the low oxygen levels of the water column, and the stabilization of MMHg due to abundant ligands present in these alkaline waters. Differences in MMHg concentrations in water and sediments compartments between Lake Titicaca and Uru-Uru were found to mirror the offset in MMHg levels that also exist in their respective food webs. This suggests that in situ MMHg baseline production is likely the main factor controlling MMHg levels in fish species consumed by the local population. Finally, the increase of anthropogenic pressure in Lake Titicaca may probably enhance eutrophication processes which favor MMHg production and thus accumulation in water and biota.
Assuntos
Monitoramento Ambiental , Lagos/química , Mercúrio/análise , Poluentes Químicos da Água/análise , Animais , Bolívia , Ecossistema , Eutrofização , Peixes , Cadeia Alimentar , Mineração , PlânctonRESUMO
Lake Uru Uru (3686 m a.s.l.) located in the Bolivian Altiplano region receives both mining effluents and urban wastewater discharges originating from the surrounding local cities which are under rapid development. We followed the spatiotemporal distribution of different mercury (Hg) compounds and other metal(oid)s (e.g., Fe, Mn, Sb, Ti and W) in both water and sediments during the wet and dry seasons along a north-south transect of this shallow lake system. Along the transect, the highest Hg and metal(oid) concentrations in both water and sediments were found downstream of the confluences with mining effluents. Although a dilution effect was found for major elements during the wet season, mean Hg and metal(oid) concentrations did not significantly differ from the dry season due to the increase in acid mine drainage (AMD) inputs into the lake from upstream mining areas. In particular, high filtered (<0.45 µm) mono-methylmercury (MMHg) concentrations (0.69 ± 0.47 ng L-1) were measured in surface water representing 49 ± 11% of the total filtered Hg concentrations (THgF) for both seasons. Enhanced MMHg lability in relation with the water alkalinity, coupled with abundant organic ligands and colloids (especially for downstream mining effluents), are likely factors favoring Hg methylation and MMHg preservation while inhibiting MMHg photodegradation. Lake sediments were identified as the major source of MMHg for the shallow water column. During the dry season, diffusive fluxes were estimated to be 227 ng m-2 d-1 for MMHg. This contribution was found to be negligible during the wet season due to a probable shift of the redox front downwards in the sediments. During the wet season, the results obtained suggest that various sources such as mining effluents and benthic or macrophytic biofilms significantly contribute to MMHg inputs in the water column. This work demonstrates the seasonally dependent synergistic effect of AMD and urban effluents on the shallow, productive and evaporative high altitude lake ecosystems which promotes the formation of natural organometallic toxins such as MMHg in the water column.
Assuntos
Lagos/química , Mercúrio/análise , Metais Pesados/análise , Compostos de Metilmercúrio/análise , Mineração , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Bolívia , Cidades , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos/química , Estações do AnoRESUMO
Methylation and demethylation represent major transformation pathways regulating the net production of methylmercury (MMHg). Very few studies have documented Hg reactivity and transformation in extreme high-altitude lake ecosystems. Mercury (Hg) species concentrations (IHg, MMHg, Hg°, and DMHg) and in situ Hg methylation (M) and MMHg demethylation (D) potentials were determined in water, sediment, floating organic aggregates, and periphyton compartments of a shallow productive Lake of the Bolivian Altiplano (Uru Uru Lake, 3686 m). Samples were collected during late dry season (October 2010) and late wet season (May 2011) at a north (NS) and a south (SS) site of the lake, respectively. Mercury species concentrations exhibited significant diurnal variability as influenced by the strong diurnal biogeochemical gradients. Particularly high methylated mercury concentrations (0.2 to 4.5 ng L(-1) for MMHgT) were determined in the water column evidencing important Hg methylation in this ecosystem. Methylation and D potentials range were, respectively, <0.1-16.5 and <0.2-68.3 % day(-1) and were highly variable among compartments of the lake, but always higher during the dry season. Net Hg M indicates that the influence of urban and mining effluent (NS) promotes MMHg production in both water (up to 0.45 ng MMHg L(-1) day(-1)) and sediment compartments (2.0 to 19.7 ng MMHg g(-1) day(-1)). While the sediment compartment appears to represent a major source of MMHg in this shallow ecosystem, floating organic aggregates (dry season, SS) and Totora's periphyton (wet season, NS) were found to act as a significant source (5.8 ng MMHg g(-1) day(-1)) and a sink (-2.1 ng MMHg g(-1) day(-1)) of MMHg, respectively. This work demonstrates that high-altitude productive lake ecosystems can promote MMHg formation in various compartments supporting recent observations of high Hg contents in fish and water birds.